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Fig. 1. Applications of our method: (top left) adding a new object in a masked area, guided by a text prompt; (top right) altering a part within an existing
object; (middle left) generation of text; (middle right) altering the background in the scene; (bottom left) generating multiple predictions for the same text
prompt (“stones”); (bottom right) guiding the result by a combination of text (“paint splashes”) and scribbles.

The tremendous progress in neural image generation, coupled with the
emergence of seemingly omnipotent vision-language models has finally
enabled text-based interfaces for creating and editing images. Handling
generic images requires a diverse underlying generative model, hence the
latest works utilize diffusion models, which were shown to surpass GANs
in terms of diversity. One major drawback of diffusion models, however, is
their relatively slow inference time. In this paper, we present an accelerated
solution to the task of local text-driven editing of generic images, where the
desired edits are confined to a user-provided mask. Our solution leverages
a text-to-image Latent Diffusion Model (LDM), which speeds up diffusion
by operating in a lower-dimensional latent space and eliminating the need
for resource-intensive CLIP gradient calculations at each diffusion step. We
first enable LDM to perform local image edits by blending the latents at
each step, similarly to Blended Diffusion. Next we propose an optimization-
based solution for the inherent inability of LDM to accurately reconstruct
images. Finally, we address the scenario of performing local edits using
thin masks. We evaluate our method against the available baselines both
qualitatively and quantitatively and demonstrate that in addition to being
faster, it produces more precise results.
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1 INTRODUCTION
In recent years we have witnessed tremendous progress in realistic
image synthesis and image manipulation with deep neural genera-
tive models. GAN-based models were first to emerge [Brock et al.
2018; Goodfellow et al. 2014; Karras et al. 2019, 2020], soon followed
by diffusion-based models [Ho et al. 2020; Nichol and Dhariwal
2021; Sohl-Dickstein et al. 2015]. In parallel, recent vision-language
models, such as CLIP [Radford et al. 2021], have paved the way for
generating and editing images using a fundamental form of human
communication — natural language. The resulting text-guided im-
age generation and manipulation approaches, e.g., [Ding et al. 2021;
Nichol et al. 2021; Patashnik et al. 2021; Ramesh et al. 2022; Saharia
et al. 2022b; Yu et al. 2022], enable artists to simply convey their
intent in natural language, potentially saving hours of painstaking
manual work. Figure 1 shows a few examples.
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However, the vast majority of text-guided approaches focus on
generating images from scratch or on manipulating existing im-
ages globally. The local editing scenario, where the artist is only
interested in modifying a part of a generic image, while preserving
the remaining parts, has not received nearly as much attention,
despite the ubiquity of this use case in practice. We know of only
three methods to date that explicitly address the local editing sce-
nario: Blended Diffusion [Avrahami et al. 2022b], GLIDE [Nichol
et al. 2021] and DALL·E 2 [Ramesh et al. 2022]. Among these, only
Blended Diffusion is publicly available in full.
All three local editing approaches above are based on diffusion

models [Ho et al. 2020; Nichol and Dhariwal 2021; Sohl-Dickstein
et al. 2015]. While diffusion models have shown impressive results
on generation, editing, and other tasks (Section 2), they suffer from
long inference times, due to the iterative diffusion process that is
applied at the pixel level to generate each result. Some recent works
[Bond-Taylor et al. 2021; Esser et al. 2021b; Gu et al. 2021; Hu et al.
2021; Rombach et al. 2022; Vahdat et al. 2021] have thus proposed to
perform the diffusion in a latent space with lower dimensions and
higher-level semantics, compared to pixels, yielding competitive per-
formance on various tasks with much lower training and inference
times. In particular, Latent Diffusion Models (LDM) [Rombach et al.
2022] offer this appealing combination of competitive image quality
with fast inference, however, this approach targets text-to-image
generation from scratch, rather than global image manipulation, let
alone local editing.
In this work, we harness the merits of LDM to the task of local

text-guided natural image editing, where the user provides the image
to be edited, a natural language text prompt, and a mask indicating
an area to which the edit should be confined. Our approach is “zero-
shot”, since it relies on available pretrained models, and requires no
further training. We first show how to adapt the Blended Diffusion
approach of Avrahami et al. [2022b] to work in the latent space of
LDM, instead of working at the pixel level.

Next, we address the imperfect reconstruction inherent to LDM,
due to the use of VAE-based lossy latent encodings. This is espe-
cially problematic when the original image contains areas to which
human perception is particularly sensitive (e.g., faces or text) or
other non-random high frequency details. We present an approach
that employs latent optimization to effectively mitigate this issue.
Then, we address the challenge of performing local edits inside

thin masks. Such masks are essential when the desired edit is highly
localized, but they present a difficulty when working in a latent
space with lower spatial resolution. To overcome this issue, we
propose a solution that starts with a dilated mask, and gradually
shrinks it as the diffusion process progresses.

Finally, we evaluate our method against the baselines both quali-
tatively and quantitatively, using new metrics for text-driven edit-
ing methods that we propose: precision and diversity. We demon-
strate that our method is not only faster than the baselines, but also
achieves better precision.

In summary, the main contribution of this paper are: (1) Adapting
the text-to-image LDM to the task of local text-guided image editing.
(2) Addressing the inherent problem of inaccurate reconstruction
in LDM, which severely limits the applicability of this method. (3)
Addressing the case when the method is fed by a thin mask, based

on our investigation of the diffusion dynamics. (4) Proposing new
evaluation metrics for quantitative comparisons between local text-
driven editing methods.

2 RELATED WORK
Text-to-image synthesis and global editing: Text-to-image syn-
thesis has advanced tremendously in recent years. Seminal works
based on RNNs [Mansimov et al. 2016] and GANs [Reed et al. 2016;
Xu et al. 2018; Zhang et al. 2017, 2018b], were later superseded by
transformer-based approaches [Vaswani et al. 2017]. DALL·E [Ramesh
et al. 2021] proposed a two-stage approach: first, train a discrete VAE
[Razavi et al. 2019; van den Oord et al. 2017] to learn a rich semantic
context, then train a transformer model to autoregressively model
the joint distribution over the text and image tokens.
Another line of works is based on CLIP [Radford et al. 2021], a

vision-language model that learns a rich shared embedding space
for images and text, by contrastive training on a dataset of 400 mil-
lion (image, text) pairs collected from the internet. Some of them
[Crowson 2021; Crowson et al. 2022; Liu et al. 2021; Murdock 2021;
Paiss et al. 2022; Patashnik et al. 2021] combine a pretrained gen-
erative model [Brock et al. 2018; Dhariwal and Nichol 2021; Esser
et al. 2021a] with a CLIP model to steer the generative model to
perform text-to-image synthesis. Utilizing CLIP along with a gener-
ative model was also used for text-based domain adaptation [Gal
et al. 2022] and text-to-image without training on text data [Ashual
et al. 2022; Wang et al. 2022; Zhou et al. 2021]. Make-a-scene [Gafni
et al. 2022] first predicts the segmentation mask, conditioned on the
text, and then uses the generated mask along with the text to gener-
ate the predicted image. SpaText [Avrahami et al. 2022a] extends
Make-a-scene to support free-form text prompt per segment. These
works do not address our setting of local text-guided image editing.

Diffusion models were also used for various global image-editing
applications: ILVR [Choi et al. 2021] demonstrates how to condi-
tion a DDPM model on an input image for image translation tasks.
Palette [Saharia et al. 2022a] trains a designated diffusion model to
perform four image-to-image translation tasks, namely colorization,
inpainting, uncropping, and JPEG restoration. SDEdit [Meng et al.
2021] demonstrates stroke painting to image, image compositing,
and stroke-based editing. RePaint [Lugmayr et al. 2022] uses a diffu-
sion model for free-form inpainting of images. None of the above
methods tackle the problem of local text-driven image editing.
Local text-guided image manipulation: Paint By Word [Bau

et al. 2021] was first to address the problem of zero-shot local text-
guided image manipulation by combining BigGAN / StyleGAN with
CLIP and editing only the part of the feature map that corresponds
to the input mask. However, this method only operated on gen-
erated images as input, and used a separate generative model per
input domain. Later, Blended Diffusion [Avrahami et al. 2022b] was
proposed as the first solution for local text-guided editing of real
generic images; this approach is further described in Section 3.

Text2LIVE [Bar-Tal et al. 2022] enables editing the appearance of
an object within an image, without relying on a pretrained genera-
tive model. They mainly focus on changing the colors/textures of
an existing object or adding effects such as fire/smoke, and not on
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(a) Input image (b) Input mask (c) Blended Diffusion (d) Ours

Fig. 2. Noise artifacts: Given the input image (a) and mask (b) with the
guiding text “curly blond hair”, Blended Diffusion produces noticeable pixel-
level noise artifacts (c), in contrast to our method (d).

editing a general scene by removing objects or replacing them with
new ones, as we do.
More related to our work are the recent GLIDE [Nichol et al.

2021] and DALL·E 2 [Ramesh et al. 2022] works. GLIDE employs a
two-stage diffusion-based approach for text-to-image synthesis: the
first stage generates a low-resolution version of the image, while
the second stage generates a higher resolution version of the image,
conditioned on both the low-resolution version and the guiding text.
In addition, they fine-tune their model specifically for the task of lo-
cal editing by a guiding text prompt. Currently, only GLIDE-filtered,
a smaller version of their model (300M parameters instead of 5B),
which was trained on a smaller filtered dataset, has been released.
As we demonstrate in Section 5, GLIDE-filtered often fails to obtain
the desired edits. DALL·E 2 performs text-to-image synthesis by
mapping text prompts into CLIP image embeddings, followed by
decoding such embeddings to images. The DALL·E 2 website [Ope-
nAI 2022a] shows some examples of local text-guided image editing;
however, this is not discussed in the paper [Ramesh et al. 2022].
Furthermore, neither of their two models has been released. The
only available resource is their online demo [OpenAI 2022a] that is
free for a small number of images, which we use for comparisons
(Figure 8).

The concurrent prompt-to-prompt work [Hertz et al. 2022] en-
ables editing of generated images without input masks, given a
source text prompt and a target text prompt. In contrast, our method
enables editing real images, given only a target prompt and a mask.

In summary, at the time of this writing, the only publicly available
models that address our setting are Blended Diffusion and GLIDE-
filtered.

3 LATENT DIFFUSION AND BLENDED DIFFUSION
Diffusion models are deep generative models that sample from the
desired distribution by learning to reverse a gradual noising process.
Starting from a standard normal distribution noise 𝑥𝑇 , a series of
less-noisy latents, 𝑥𝑇−1, ..., 𝑥0, are produced. For more details, please
refer to [Ho et al. 2020; Nichol and Dhariwal 2021].
Traditional diffusion models operate directly in the pixel space,

hence their optimization often consumes hundreds of GPU days and
their inference times are long. To enable faster training and inference
on limited computational resources, Rombach et al. [2022] proposed
Latent Diffusion Models (LDMs). They first perform perceptual im-
age compression, using an autoencoder (VAE [Kingma and Welling
2013] or VQ-VAE [Esser et al. 2021a; Razavi et al. 2019; Van Den Oord
et al. 2017]). Next, a diffusion model is used that operates on the

lower-dimensional latent space. They also demonstrate the ability
to train a conditional diffusion model on various modalities (e.g.,
semantic maps, images, or texts), s.t. when they combine it with the
autoencoder they create image-to-image / semantic-map-to-image /
text-to-image transitions.
Blended Diffusion [Avrahami et al. 2022b] addresses zero-shot

text-guided local image editing. This approach utilizes a diffusion
model trained on ImageNet [Deng et al. 2009], which serves as a
prior for the manifold of the natural images, and a CLIP model
[Radford et al. 2021], which navigates the diffusion model towards
the desired text-specified outcome. In order to create a seamless
result where only the masked region is modified to comply with
the guiding text prompt, each of the noisy images progressively
generated by the CLIP-guided process is spatially blended with the
corresponding noisy version of the input image. The main limitations
of this method is its slow inference time (about 25 minutes using a
GPU) and its pixel-level noise artifacts (see Figure 2).
In the next section, we leverage the trained LDM text-to-image

model of Rombach et al. [2022] to offer a solution for zero-shot text-
guided local image editing by incorporating the idea of blending the
diffusion latents from Avrahami et al. [2022b] into the LDM latent
space (Section 4.1) and mitigating the artifacts inherent to working
in that space (Sections 4.2 and 4.3).

4 METHOD
Given an image 𝑥 , a guiding text prompt 𝑑 and a binary mask𝑚 that
marks the region of interest in the image, our goal is to produce a
modified image 𝑥 , s.t. the content 𝑥 ⊙𝑚 is consistent with the text
description 𝑑 , while the complementary area remains close to the
source image, i.e., 𝑥 ⊙ (1−𝑚) ≈ 𝑥 ⊙ (1−𝑚), where ⊙ is element-wise
multiplication. Furthermore, the transition between the two areas
of 𝑥 should ideally appear seamless.

In Section 4.1 we start by incorporating Blended Diffusion [Avra-
hami et al. 2022b] into Latent Diffusion [Rombach et al. 2022] in
order to achieve local text-driven editing. The resulting method fails
to achieve satisfying results in some cases; specifically, the recon-
struction of the complementary area is imperfect, and the method
struggles when the input mask𝑚 contains thin parts. We solve these
issues in Sections 4.2 and 4.3, respectively.

4.1 Blended Latent Diffusion
As explained in Section 3, Latent Diffusion [Rombach et al. 2022] can
generate an image from a given text (text-to-image LDM). However,
this model lacks the capability of editing an existing image in a
local fashion, hence we propose to incorporate Blended Diffusion
[Avrahami et al. 2022b] into text-to-image LDM. Our approach is
summarized in Algorithm 1, and depicted as a diagram in Figure 3.

LDM performs text-guided denoising diffusion in the latent space
learned by a variational auto-encoder VAE = (𝐸 (𝑥), 𝐷 (𝑧)), where
𝐸 (𝑥) encodes an image 𝑥 to a latent representation 𝑧 and 𝐷 (𝑧) de-
codes it back to the pixel space. Referring to the part that we wish to
modify as foreground (fg) and to the remaining part as background
(bg), we follow the idea of Blended Diffusion and repeatedly blend
the two parts in this latent space, as the diffusion progresses. The
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Fig. 3. Blended Latent Diffusion: a diagram illustrating our method, as described in Algorithm 1.

ALGORITHM 1: Latent Blended Diffusion: given a text-conditioned
Latent Diffusion model {VAE = (𝐸 (𝑥 ), 𝐷 (𝑧 ) ),DiffusionModel =

(noise(𝑧, 𝑡 ), denoise(𝑧,𝑑, 𝑡 ) ) }
Input: source image 𝑥 , target text description 𝑑 , input mask𝑚, diffusion
steps 𝑘 .
Output: edited image 𝑥 that differs from input image 𝑥 inside area𝑚
according to text description 𝑑

𝑚latent = downsample(𝑚)
𝑧init ∼ 𝐸 (𝑥 )
𝑧𝑘 ∼ noise(𝑧init, 𝑘 )
for all 𝑡 from 𝑘 to 0 do

𝑧fg ∼ denoise(𝑧𝑡 , 𝑑, 𝑡 )
𝑧bg ∼ noise(𝑧init, 𝑡 )
𝑧𝑡 ← 𝑧fg ⊙𝑚latent + 𝑧bg ⊙ (1 −𝑚latent )

end for
𝑥 = 𝐷 (𝑧0 )
return 𝑥

input image 𝑥 is encoded into the latent space using the VAE en-
coder 𝑧init ∼ 𝐸 (𝑥). The latent space still has spatial dimensions (due
to the convolutional nature of the VAE), however the width and
the height are smaller than those of the input image (by a factor
of 8). We therefore downsample the input mask𝑚 to these spatial
dimensions to obtain the latent space binary mask𝑚latent, which
will be used to perform the blending.

Now, we noise the initial latent 𝑧init to the desired noise level
(in a single step) and manipulate the denoising diffusion process in
the following way: at each step, we first perform a latent denoising
step, conditioned directly on the guiding text prompt 𝑑 , to obtain
a less noisy foreground latent denoted as 𝑧fg, while also noising
the original latent 𝑧init to the current noise level to obtain a noisy
background latent 𝑧bg. The two latents are then blended using the
resized mask, i.e. 𝑧fg ⊙ 𝑚latent + 𝑧bg ⊙ (1 − 𝑚latent), to yield the
latent for the next latent diffusion step. Similarly to Blended Dif-
fusion, at each denoising step the entire latent is modified, but the
subsequent blending enforces the parts outside𝑚latent to remain
the same. While the resulting blended latent is not guaranteed to

be coherent, the next latent denoising step makes it so. Once the
latent diffusion process terminates, we decode the resultant latent
to the output image using the decoder 𝐷 (𝑧). A visualization of the
diffusion process is available in the supplementary material.

Operating on the latent level, in comparison to operating directly
on pixels using a CLIP model, has the following main advantages:
Faster inference: The smaller dimension of the latent space

makes the diffusion process much faster. In addition, there is no
need to calculate the CLIP-loss gradients at each denoising step.
Thus, the entire editing process is faster by an order of magnitude
(see Section 5.2).

Avoiding pixel-level artifacts: Pixel-level diffusion sometimes
results in pixel values outside the valid range, producing noticeable
clipping artifacts. Operating in the latent space avoids such artifacts
(Figure 2).

Avoiding adversarial examples: Operating on the latent space
with no pixel-level CLIP-loss gradients effectively eliminates the
risk of adversarial examples, eliminating the need for the extending
augmentations of Avrahami et al. [2022b].

Better precision: Our method achieves better precision than the
baselines, both at the batch level and at the final prediction level
(Section 5).

However, operating in latent space also introduces some draw-
backs, which we will address later in this section:
Imperfect reconstruction: The VAE latent encoding is lossy;

hence, the final results are upper-bounded by the decoder’s recon-
struction abilities. Even the initial reconstruction, before performing
any diffusion, often visibly differs from the input. In images of hu-
man faces, or images with high frequencies, even such slight changes
may be perceptible (see Figure 4(b)).
Thin masks: When the input mask𝑚 is relatively thin (and its

downscaled version𝑚latent can become even thinner), the effect of
the edit might be limited or non-existent (see Figure 7).

4.2 Background Reconstruction
As discussed above, LDM’s latent representation is obtained using
a VAE [Kingma and Welling 2013], which is lossy. As a result, the
encoded image is not reconstructed exactly, even before any latent
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Input image Input mask (a) VAE reconstruction (b) Edit result (c) Pixel blending (d) Poisson blending (e) Latent optimization (f) Weights optimization

Fig. 4. Background reconstruction comparison: Given the input image, mask, and guiding text prompt “red hair”, the reconstruction does not preserve the
unmasked area details (a,b). Pixel-level blending yields a result (c) with noticeable seams. Poisson seamless cloning (d) changes the colors of the edited area,
while latent optimization (e) produces an over smoothed result. We propose per-sample weights optimization (f) which produces the best results.
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Fig. 5. Background reconstruction using decoderweights fine-tuning:
Note the bad initial prediction of the high-frequency background areas: the
human face in the 1st and 2nd rows, the doll face in the 3rd row, and the
text on the books on the 4th and 5th (zoom in for a better presentation).

diffusion takes place (Figure 4(a)). The imperfect reconstruction may
thus be visible in areas outside the mask (Figure 4(b)).
A naïve way to deal with this problem is to stitch the original

image and the edited result 𝑥 at the pixel level, using the input mask
𝑚. However, because the unmasked areas were not generated by
the decoder, there is no guarantee that the generated part will blend
seamlessly with the surrounding background. Indeed, this naïve
stitching produces visible seams, as demonstrated in Figure 4(c).
Alternatively, one could perform seamless cloning between the

edited region and the original, e.g., utilizing Poisson Image Editing
[Pérez et al. 2003], which uses gradient-domain reconstruction in

pixel space. However, this often results in a noticeable color shift of
the edited area, as demonstrated in Figure 4(d).
In the GAN inversion literature [Abdal et al. 2019, 2020; Xia

et al. 2021; Zhu et al. 2020] it is standard practice to achieve im-
age reconstruction via latent-space optimization. In theory, latent
optimization can also be used to perform seamless cloning, as a
post-process step: given the input image 𝑥 , the mask 𝑚, and the
edited image 𝑥 , along with its corresponding latent vector 𝑧0, one
could use latent optimization to search for a better vector 𝑧∗, s.t. the
masked area will be similar to the edited image 𝑥 and the unmasked
area will be similar to the input image 𝑥 :

𝑧∗ = argmin
𝑧
∥𝐷 (𝑧)⊙𝑚−𝑥⊙𝑚∥ +𝜆∥𝐷 (𝑧)⊙(1−𝑚)−𝑥⊙(1−𝑚)∥ (1)

using a standard distance metric, such as MSE. 𝜆 is a hyperparam-
eter that controls the importance of the background preservation,
which we set to 𝜆 = 100 for all our results and comparisons. The
optimization process is initialized with 𝑧∗ = 𝑧0. The final image is
then inferred from 𝑧∗ using the decoder: 𝑥∗ = 𝐷 (𝑧∗) . However, as
we can see in Figure 4(e), even though the resulting image is closer
to the input image, it is over-smoothed.
The inability of latent space optimization to capture the high-

frequency details suggests that the expressivity of the decoder 𝐷 (𝑧)
is limited. This leads us again to draw inspiration from GAN inver-
sion literature — it was shown [Bau et al. 2020; Pan et al. 2021; Roich
et al. 2021; Tzaban et al. 2022] that fine-tuning the GAN generator
weights per image results in a better reconstruction. Inspired by
this approach, we can achieve seamless cloning by fine-tuning the
decoder’s weights 𝜃 on a per-image basis:

𝜃∗ = argmin
𝜃

∥𝐷𝜃 (𝑧0)⊙𝑚−𝑥⊙𝑚∥ +𝜆∥𝐷𝜃 (𝑧0)⊙(1−𝑚)−𝑥⊙(1−𝑚)∥

(2)
and use these weights to infer the result 𝑥∗ = 𝐷𝜃 ∗ (𝑧0). As we can
see in Figure 4(f), this method yields the best result: the foreground
region follows 𝑥 , while the background preserves the fine details
from the input image 𝑥 , and the blending appears seamless.
In contrast to Blended Diffusion [Avrahami et al. 2022b], in our

method the background reconstruction is optional. Thus, it is only
needed in cases where the unmasked area contains perceptually
important fine-detail content, such as faces, text, structured textures,
etc. A few reconstruction examples are shown in Figure 5.
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Fig. 6. Thinmask progression:Given the input image, mask (bottom right
corner), and guiding text “fire”, in the standard case (1) only the initial stages
correspond to the text (rough red colors), but later the blending overrides
it. In contrast, using our progressively shrinking masks (3) the guiding text
corresponds to all the images throughout the diffusion process (2).

4.3 Progressive Mask Shrinking
When the input mask𝑚 has thin parts, these parts may become even
thinner in its downscaled version𝑚latent, to the point that changing
the latent values under𝑚latent by the text-driven diffusion process
fails to produce a visible change in the reconstructed result. In
order to pinpoint the root-cause, we visualize the diffusion process:
given a noisy latent 𝑧𝑡 at timestep 𝑡 , we can estimate 𝑧0 using a
single diffusion step with the closed form formula derived by Song
et al. [2020]. The corresponding image is then inferred using the
VAE decoder 𝐷 (𝑧0).

Using the above visualization, Figure 6 shows that during the
denoising process, the earlier steps generate only rough colors and
shapes, which are gradually refined to the final output. The top
row shows that even though the guiding text “fire” is echoed in the
latents early in the process, blending these latents with 𝑧bg using a
thin𝑚latent mask may cause the effect to disappear.

This understanding suggests the idea of progressive mask shrink-
ing: because the early noisy latents correspond to only the rough
colors and shapes, we start with a rough, dilated version of𝑚latent,
and gradually shrink it as the diffusion process progresses, s.t. only
the last denoising steps employ the thin𝑚latent mask when blending
𝑧fg with 𝑧bg. The process is visualized in Figure 6. For more imple-
mentation details and videos visualizing the process, please see the
supplementary material.
Figure 7 demonstrates the effectiveness of this method. Never-

theless, this technique struggles in generating fine details (e.g. the
“green bracelet” example).

4.4 Prediction Ranking
Due to the stochastic nature of the diffusion process, we can gen-
erate multiple predictions for the same inputs, which is desirable
because of the one-to-many nature of our problem. As in previous
works [Avrahami et al. 2022b; Ramesh et al. 2021; Razavi et al. 2019],
we found it beneficial to generate multiple predictions, rank them,

“white clouds” “green smoke” “green bracelet”
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Fig. 7. Progressive mask shrinking:With the thin input masks in these
examples (first row), the method described in Algorithm 1 fails to alter
the image according to the text (second row). This issue is mitigated using
progressive mask shrinking (third row).

and retrieve the best ones. We rank the predictions by the normal-
ized cosine distance between their CLIP embeddings and the CLIP
embedding of the guiding prompt 𝑑 . We also use the same ranking
for all of the baselines that we compare our method against, except
PaintByWord++ [Bau et al. 2021; Crowson et al. 2022], as it produces
a single output per input, and thus no ranking is required.

5 RESULTS
We begin by comparing our method against previous methods, both
qualitatively and quantitatively. Next, we demonstrate several of
the use cases enabled by our method.

5.1 Comparisons
In Figure 8 we compare the zero-shot text-driven image editing
results produced by our method against the following baselines:
(1) Local CLIP-guided diffusion [Crowson 2021], (2) PaintByWord++
[Bau et al. 2021; Crowson et al. 2022], (3) Blended Diffusion [Avra-
hami et al. 2022b], (4) GLIDE [Nichol et al. 2021], (5) GLIDE-masked
[Nichol et al. 2021], (6) GLIDE-filtered [Nichol et al. 2021], and (7)
DALL·E 2. See Avrahami et al. [2022b] for more details on baselines
(1)–(3). The images for the baselines (1)–(5) were taken directly
from the corresponding papers. Note that Nichol et al. [2021] only
released GLIDE-filtered, a smaller version of GLIDE, which was
trained on a filtered dataset, and this is the only public version of
GLIDE. Because the (4) full GLIDE model and (5) GLIDE-masked
are not available, we use the results from the paper [Nichol et al.
2021]. The images for (3)–(6) and our method required generating
a batch of samples and taking the best one ranked by CLIP. The
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“pink yarn ball” “red dog collar” “dog bone” “pizza” “golden “blooming tree” “tie with black “blue short
necklace” and yellow pants”

stripes”
Fig. 8. Comparison to baselines: A comparison with Local CLIP-guided diffusion [Crowson 2021], PaintByWord++ [Bau et al. 2021; Crowson et al. 2022],
Blended Diffusion [Avrahami et al. 2022b], GLIDE [Nichol et al. 2021], GLIDE-masked [Nichol et al. 2021], GLIDE-filtered [Nichol et al. 2021] and DALL·E 2
[Ramesh et al. 2022].
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GLIDE model has about ×3 the parameters vs. our model. See the
supplementary materials for more details.
Figure 8 demonstrates that baselines (1) and (2) do not always

preserve the background of the input image. The edits by GLIDE-
filtered (6) typically fail to follow the guiding text. So the comparable
baselines are (3) Blended Diffusion, (4) GLIDE, (5) GLIDE-masked,
and (7) DALL·E 2. As we can see, our method avoids the pixel-level
noises of Blended Diffusion (e.g., the pizza example) and generates
better colors and textures (e.g., the dog collar example). Comparing
to GLIDE, we see that in some cases GLIDE generates better shad-
ows than our method (e.g., the cat example), however it can add
artifacts (e.g., the front right paw of the cat in GLIDE’s prediction).
Furthermore, GLIDE’s generated results do not always follow the
guiding text (e.g., the golden necklace and blooming tree examples),
hence, the authors of GLIDE propose GLIDE-masked, a version of
GLIDE that does not take into account the given image — by fully
masking the context. Using this approach, they manage to generate
in the masked area, but it comes at the expense of the transition
quality between the masked region and the background (e.g., the
plate in the pizza example and the bone in the dogs example). Our
method is able to generate a result that corresponds to the text in
all the examples, while being blended into the scene seamlessly.

Inspecting DALL·E 2 results, we see that most of the results either
ignore the guiding text (e.g., the dog collar, dog bone, and pizza ex-
amples) or only partially follow it (e.g., “golden necklace” generates
a regular necklace, “blooming tree” generates a flower, and “blue
short pants” generates text on top of the pants). For more examples,
please see the supplementary material.
During our experiments, we noticed that the predictions of our

method typically contain more results that comply with the guiding
text prompt. In order to verify this quantitatively, we generated
editing predictions for 50 random images, random masks, and text
prompts randomly chosen from ImageNet classes. See Figure 9 for
some examples. Then, batch precision was evaluated using an off-
the-shelf ImageNet classifier. We refrained from using CLIP cosine
similarity as the precision measure, because it was shown that CLIP
operates badly as an evaluator for gradient-based solutions that use
CLIP, due to adversarial attacks [Nichol et al. 2021]. We denote this
measure as the “precision” of the model. For more details see Ap-
pendix C.1 As reported in Table 1, our method indeed outperforms
the baselines by a large margin. In addition, we ranked the results
in the batch as described in Section 4.4 and calculated the average
accuracy by taking only the top image in each batch, to find that
our method still outperforms the baselines.
We also assess the average batch diversity, by calculating the

pairwise LPIPS [Zhang et al. 2018a] distances between all themasked
predictions in the batch that were classified correctly by the classifier.
As can be seen in Table 1, our method has the second-best diversity,
but it is outperformed by Local CLIP-guided diffusion by a large
margin, which we attribute to the fact that this method changes
the entire image (does not preserve the background) and thus the
content generated in the masked area is much less constrained.
In addition, we conducted a user study on Amazon Mechanical

Turk (AMT) [Amazon 2022] to assess the visual quality and text-
matching of our results. Each of the 50 random predictions that
were used in the quantitative evaluation was presented to a human

Table 1. Quantitative comparison. In terms of precision, our method
outperforms the baselines, both at the batch level and at the best result
level. In terms of diversity, only the Local CLIP-guided diffusion baseline
achieves a better score, due to its tendency to change the entire image
significantly (lack of background preservation). The two rightmost columns
report the percentage of human evaluators that preferred our method over
the baseline. Our method outperforms the baselines in terms of visual
quality and text matching except the visual quality of GLIDE-filtered, which
mostly leaves the input untouched.

Method Batch Batch Best Result Human Human
Precision ↑ Diversity ↑ Precision ↑ Vis. Quality Text Matching

Blended Diffusion 10.4% 0.106 36% 64% 55%
Local CLIP-guided diffusion 10.49% 0.419 38% 74% 62%
PaintByWord++ - - 0% 94% 68%
GLIDE-filtered 1.87% 0.114 4% 26% 86%
Ours 28.66% 0.115 54% - -

Table 2. Inference time comparison: Our method outperforms all other
methods when using batch processing. This stems from the fact that we
perform diffusion in the latent space, and because our background preser-
vation optimization is only required for the top-ranked result. Batch sizes
marked with ∗ are below the size recommended by the respective authors
(lower batch precision), but are reported for comparison purposes.

Method Batch Single Image Full Batch Per Image in
Size (sec) ↓ (sec) ↓ Batch (sec) ↓

Blended Diffusion 64 27 1472 23
Blended Diffusion 24∗ 27 552 23
Local CLIP-guided diffusion 64 27 1472 23
Local CLIP-guided diffusion 24∗ 27 552 23
PaintByWord++ - 78 - -
GLIDE-filtered 24 7 89 3.7
Ours (without background opt.) 24 6 53 2.2
Ours (with background opt.) 24 25 72 3

evaluator next to a result from one of the baselines. The evaluator
was asked to choose which of the two results has a better (1) visual
quality and (2) matches the text more closely. The evaluators could
also indicate that neither image is better than the other. As seen in
Table 1 (right), the majority (≥ 50%) of evaluators prefer the visual
quality and the text matching of our method over the other methods.
A binomial statistical significance test, reported in Table 2 in the
supplementary material, suggests that these results are statistically
significant. The results of GLIDE-filtered [Nichol et al. 2021] were
preferred in terms of visual quality, however these results typically
fail to change the input image or make negligible changes: thus,
although the result looks natural, it does not reflect the desired edit.
See Figure 9 and the supplementary material for more examples
and details. We chose to use a two-way question system in order
to make the task clearer to the evaluators by providing only two
images without the input image and mask.

5.2 Inference Time Comparison
We compare the inference time of various methods on an A10
NVIDIA GPU in Table 2. We show results for Blended Diffusion
and GLIDE-filtered (the available smaller model, which is probably
faster than the full unpublished model). Both of these methods re-
quire generating multiple predictions (batch) and taking the best
one in order to achieve good results. The recommended batch size
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Fig. 9. Precision & Diversity Experiment: Two examples of random input images and masks, and the corresponding results of different methods, used in
our quantitative evaluation. GLIDE-filtered [Nichol et al. 2021] typically fails to modify the image according to the guiding text prompt; hence, the typical
result looks similar to the input image, and therefore looks natural. For more examples please refer to the supplementary material.

for Blended Diffusion is 64, whereas GLIDE-filtered and our method
use a batch size of 24.

Our method supports generation with or without optimizing for
background preservation (Section 4.2), and we report both options
in Table 2. The background optimization introduces an additional
inference time overhead, however, it is up to the user to decide
whether this additional step is necessary (e.g., when editing images
with human faces). Our method outperforms the baselines on the
standard case of batch inference, even when accounting for the back-
ground preservation optimization. The acceleration in comparison
to Blended Diffusion and Local CLIP-guided diffusion is ×10 with
equal batch sizes and ×20 with the recommended batch sizes, which
stems from the fact that our generation process is done in the lower
dimensional latent space, and the background preservation opti-
mization need only be done on the selected result. The acceleration
in comparison to PaintByWord++ and GLIDE-filtered is ×1.47 and
×1.23, respectively.

5.3 Use Cases
Our method is applicable in a variety of editing scenarios with
generic real-world images, several of which we demonstrate here.
Text-driven object editing: using our method one can easily

add new objects (Figure 1(top left)) or modify or replace existing
ones (Figure 1(top right)), guided by a text prompt. In addition, we
have found that the method is capable of injecting visually plausible
text into images, as demonstrated in Figure 1(middle left).

Background replacement: rather than inserting or editing the
foreground object, another important use case is text-guided back-
ground replacement, as demonstrated in Figure 1(middle right).
Scribble-guided editing: The user can scribble a rough shape

on a background image, provide a mask (covering the scribble) to
indicate the area that is allowed to change, and provide a text prompt.
Our method transforms the scribble into a natural object while
attempting tomatch the prompt, as demonstrated in Figure 1(bottom
left).

“a
m
an

w
ith

a
re
d
su
it”

“b
ig

m
ou

nt
ai
n”

Input image Input mask

Fig. 10. Limitations: Top row: our CLIP-based ranking takes into account
only the masked area, Thus, the results are sometimes only piece-wise
realistic, and the image does not look realistic as a whole. Bottom row: the
model has a text bias - it may try to create movie posters/book covers with
text instead or in addition to generating the actual object.

For all of the use cases mentioned above, our method is inherently
capable of generating multiple predictions for the same input, as
discussed in Section 4.4 and demonstrated in Figure 1(bottom right).
Due to the one-to-many nature of the task, we believe it is desirable
to present the user with ranked (Section 4.4) multiple outcomes,
from which they may chose the one that best suits their needs.
Alternatively, the highest ranked result can be chosen automatically.
For more results, see Section A in the supplementary.

6 LIMITATIONS & CONCLUSIONS
Although our method is significantly faster than prior works, it still
takes over a minute on an A10 GPU to generate a ranked batch of
predictions, due to the diffusion process. This limits the applicabil-
ity of our method on lower-end devices. Hence, accelerating the
inference time further is still an important research avenue.

As in Blended Diffusion, the CLIP-based ranking only takes into
account the generated masked area. Without a more holistic view
of the image, this ranking ignores the overall realism of the output
image, which may result in images where each area is realistic, but
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Fig. 11. Sensitivity analysis: we found our method to be somewhat sensi-
tive to its inputs. Small changes to the input prompt (first row), to the input
mask (second row), or to the input image (third row) may result in small
output changes.

the image does not look realistic overall, e.g., Figure 10(top). Thus,
a better ranking system would prove useful.

Furthermore, we observe that LDM’s amazing ability to generate
texts is a double-edged sword: the guiding text may be interpreted by
the model as a text generation task. For example, Figure 10(bottom)
demonstrates that instead of generating a big mountain, the model
tries to generate a movie poster named “big mountain”.
In addition, we found our method to be somewhat sensitive to

its inputs. Figure 11 demonstrates that small changes to the input
prompt, to the input mask, or to the input image may result in small
output changes. For more examples and details, please read Section
D in the supplementary material.
Even without solving the aforementioned open problems, we

have shown that our system can be used to locally edit images using
text. Our results are realistic enough for real-world editing scenarios,
and we are excited to see what users will create with the source
code that we will release upon publication.
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A ADDITIONAL EXAMPLES
In Figure 12 we demonstrate more examples of adding a new object
to a scene. In Figure 13 we demonstrate the one-to-many generation
ability of our model. In Figure 14 we demonstrate more examples
of background replacement. In addition, in Figure 15 we provide a
visualization of the diffusion process on several examples.

Table 3. Parameters comparison: A comparison between the number of
parameters of the different models. We used the same CLIP model for all
the base models which has 0.15B parameters.

Method # Parameters

Local CLIP-guided diffusion 0.55B + 0.15B = 0.70B
PaintByWord++ 0.09B + 0.15B = 0.24B
Blended Diffusion 0.55B + 0.15B = 0.70B
GLIDE 5.00B + 0.15B = 5.15B
GLIDE-filtered 0.30B + 0.15B = 0.45B
Ours 1.45B + 0.15B = 1.60B

A.1 Interactive Editing
Because of the near-perfect background preservation of our method,
the user is able to perform an interactive editing session: editing the
image gradually, where at each stage of the editing session the user
edits a different area within the image without changing the other
parts of the image that were already edited. We show an interactive
editing session in Figure 17.

B ADDITIONAL COMPARISONS
In this section we start by comparing the number of parameters
of our model against the baselines, discuss pixel-level artifacts of
Blended Diffusion, show additional visual comparisons to the base-
lines, and compare against a variant of the background reconstruc-
tion loss.

B.1 Parameters Comparison
In Table 3 we compare the number of parameters in our model
to that of the following baselines: (1) Local CLIP-guided diffusion
[Crowson 2021] (for more details see Avrahami et al. [2022b]), (2)
PaintByWord++ [Bau et al. 2021; Crowson et al. 2022] (for more
details see Avrahami et al. [2022b]), (3) Blended Diffusion [Avrahami
et al. 2022b], (4) GLIDE [Nichol et al. 2021] and (5) GLIDE-filtered
[Nichol et al. 2021].

B.2 Pixel-level Artifacts Comparison
As described in Section 4 of the main paper, the latent space diffusion
used by our method is not only faster than pixel-based diffusion, but
also mitigates the pixel-level artifacts in Blended Diffusion [Avra-
hami et al. 2022b]. We provide additional comparisons in Figure 18.

B.3 Additional Comparison Against the Baselines
In Figure 7 in the main paper, we compared our method against the
baselines qualitatively on the set of images provided by Blended
Diffusion [Avrahami et al. 2022b]. In addition, we compare our
method against the freely-available models in Figure 19.
As we can see, baselines (1) Local CLIP-guided diffusion and (2)

PaintByWord++ fail to preserve the background of the input image.
Baseline (4) GLIDE-filtered does not follow the guiding text, whereas
(5) DALL·E 2 only partially corresponds to the guiding text (in the
corgi and the yellow sweater examples). While (3) Blended Diffusion
does preserve the background and follows all of the input guiding
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“big stone” “bowl of water” “bread” “Buddha” “car tire” “clay pot”

“cola” “egg” “glow stick” “ice cube” “lamp” “milk”

“pile of dirt” “pile of gold” “tooth” “black chair” “white chair” “bonfire”

“stones” “black stones” “green stones” “purple stones” “red ball” “yellow ball”

“huge ant” “smoke” “toy car” “water puddle” “huge apple” “yellow toy truck”

Fig. 12. Adding a new object: Additional examples for adding a new object within a scene.

texts (except for the graffiti example), it suffers from noise-level
artifacts as described in Appendix B.2.

B.4 Background Reconstruction Loss Comparison
As described in Section 4.2 we handled the background reconstruc-
tion by optimizing the decoder’s weights 𝜃 on a per-image basis:

𝜃∗ = argmin
𝜃

∥𝐷𝜃 (𝑧0)⊙𝑚−𝑥⊙𝑚∥ +𝜆∥𝐷𝜃 (𝑧0)⊙(1−𝑚)−𝑥⊙(1−𝑚)∥

(3)

where 𝐷𝜃 is the decoder,𝑚 is the input mask, 𝑥 is the input image
and 𝑥 is the predicted image. Because our goal is to preserve the
background, we set most of the weight to the background term
(by setting 𝜆 = 100). It raises the question of what is the effect
of dropping the foreground term completely. As demonstrated in
Figure 20, doing so makes the colors of the edited area less vivid.
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Fig. 13. Multiple predictions: Dealing with a one-to-many task, there is a need to generate multiple predictions.

C IMPLEMENTATION DETAILS
For all the experiments reported in this paper, the pretrained models
that we have used are:

• Text-to-image Latent Diffusion model published by Rom-
bach et al. [2022].
• CLIP model with ViT-B/16 backbone for the Vision Trans-
former [Dosovitskiy et al. 2020], as released by Radford et al. [2021].
• Blended Diffusion model from Avrahami et al. [2022b].
• GLIDE-filtered model from Nichol et al. [2021].

All these methods were released under MIT license and were
implemented using PyTorch [Paszke et al. 2019].

In addition, we used the online demo of DALL·E 2 [OpenAI 2022b]
which enables the user to manually edit a real image using its inter-
face. Nevertheless, the usage of the system is free for only a limited
number of credit tokens, and the model is not available. Hence,
we could not calculate our precision and diversity metrics on this
model.
All the input images in this paper are real images that were re-

leased freely under a Creative Commons license or from our private
collection.
In the reconstruction methods described in Section 4.2 we used

the following:

• For Poisson image blending [Pérez et al. 2003] we used the
OpenCV [Bradski and Kaehler 2000] implementation.
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Input image Input mask “Acropolis” “Arc de Triomphe” “big waterfall” “China”

“Colosseum” “fire” “Golden Gate Bridge” “Machu Picchu” “Mount Fuji” “New York City”

“nuclear power plant” “Petra” “rainy” “river” “Stanford University” “Stonehenge”

“sunny” “sunrise” “swimming pool” “volcanic eruption” “winter” “green hills”

“desert” “big lake” “forest” “dusty road” “horses stable” “houses”

Fig. 14. Replacing the background: Additional examples for the background replacement capability of our model.

• For latent optimization and weights optimization we used
Adam optimizer [Kingma and Ba 2014] with a learning rate
of 0.0001 for 75 optimization steps per image.

For the progressive mask shrinking described in Section 4.3 we
used the following scheme: we dilate the downsampled mask𝑚latent
with kernels of ones with sizes 3× 3, 5× 5 and 7× 7, then we divide
the diffusion process into four parts with the same number of steps
in each part, with the first part using the most dilated mask, and the
last part using the original mask.

C.1 Precision & Diversity Metrics
As described in Section 5 we calculated precision and diversity
metrics in order to compare our method against the baselines quan-
titatively. As was shown by Nichol et al. [2021], using CLIP model
as an evaluator for text correspondence of images that were edited
with models that use CLIP’s gradients for generation, is not corre-
lated with human evaluation, because these models are susceptible
to adversarial examples. Hence, because some of our baselines are
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Fig. 15. Process visualization: a visualization of the diffusion process for various inputs, without the background reconstruction step that is explained in
section 4.2 in the main paper.

using CLIP, we had to look for an alternative evaluation model. We
opted to use a pre-trained ImageNet classifier, EfficentNet [Tan and
Le 2019], as our backbone.
We took 50 random images from the web and local collection;

next, for each image, we generated a random rectangular mask
with dimensions that are in the range [𝑑𝑖𝑚5 , 𝑑𝑖𝑚2 ] where 𝑑𝑖𝑚 is the
corresponding image dimension. Then, for each of the resulting
image-mask pairs, we sample a random class from ImageNet classes
and use the corresponding text label of that class as an input to our
model. For each of the baseline models, we generate predictions
of the recommended batch size. An example of an input and its
predictions by the various baselines can be seen in Figure 21.

To calculate the precision for each model, we go over all its predic-
tions, mask them using the input mask, and feed the masked results

to the ImageNet classifier. Because ImageNet contains many classes
with semantically close meaning (e.g., several different species of
dogs), we considered prediction as a good prediction if the ground-
truth class label (the label of the class that was fed to the generative
model) is in the top-5 predictions of the classification model. We
calculate the average accuracy at the batch level for each input. In
addition, we calculate the precision only on the top result that was
ranked by the CLIP model as described in Section 4.4 Both of these
metrics are reported in Table 1

In order to calculate the diversity at the batch level, for each input
triplet, we take only the images that were classified correctly by the
classifier (because only these images are of interest to the end-user).
We then mask the images using the corresponding masks, in order
to isolate the diversity of the foreground and then calculate the
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Fig. 16. Thin masks: An expanded version of Figure 6 from the main paper .

pairwise LPIPS [Zhang et al. 2018a] distance and take the average
across all the predictions.

C.2 User Study
As described in Section 5 we conducted a user study in order to
assess the visual quality of the results and how well they match the

guiding text, using the Amazon Mechanical Turk platform (AMT)
[Amazon 2022]. We used the 50 random predictions that were used
to evaluate our method quantitatively, as described in Appendix C.1.
We presented each human evaluator with two images — one pro-
duced by our method and the other one by a baseline, and asked
them to rate which of the two images has (1) better visual quality
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Fig. 17. Editing session: The user is able to perform several edit operations consecutively. First, the user provides the input image, mask, and text prompt “a
man with a green sweater” to get the first result, then, he masks the head area and provides the text prompt “a straw hat”, finally, he masks an area on the
wall and provides the text “a window” to get the final result.

by asking “Which of the following images has better visual quality?”
and (2) better matches the text prompt by asking “Which of the fol-
lowing images matches the label X more closely?” (replacing X with
the text prompt). We used the majority vote of the raters for each
question. The human raters could also indicate for each question
that neither of the images is better than the other (“Equal quality” for
the image quality/“Equally match” for the text matching), in which
case we split the points between both of the models equally. We

collected five ratings per question, resulting in 250 ratings per task
(visual quality/text match). The time allotted per image-pair task
was one hour, to allow the raters to properly evaluate the results
without time pressure.

We included in our user study only the freely available models
that could be used with the random predictions, hence, the study
does not include the GLIDE-full [Nichol et al. 2021] and DALL·E 2
[Ramesh et al. 2022] models, which are unavailable. A binomial
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Table 4. User study statistical analysis. A binomial statistical test of the
user study results suggests that our results are statistically significant (p-
value < 5%).

Method Visualization Quality Text Matching
p-value p-value

Blended Diffusion < 0.001 0.043
Local CLIP-guided diffusion < 0.001 < 0.001
PaintByWord++ < 0.001 < 0.001
GLIDE-filtered < 0.001 < 0.001

statistical significance test, reported in Table 4, suggests that these
results are statistically significant.

C.3 Ranking Effectiveness
As described in Section 4.4 in the main paper, we utilized the CLIP
model in order to rank the predictions of our method. As demon-
strated in Figure 22, during our experiments we noticed that the
top 20% are constantly better than the bottom 20%, but not at the
granularity of a single image — the first image is not always strictly
better than the second.
In addition, Figure 23 demonstrates the importance of the CLIP

ranking for the Blended Diffusion baseline [Avrahami et al. 2022b].
As we can see, the CLIP ranking is essential to this method. Hence,
the “full batch” column in Table 2 on the main paper is the relevant
information we should take into account when comparing the in-
ference times of our method with those of the Blended Diffusion
baseline.

D SENSITIVITY ANALYSIS
We found that small input changes to our methodmay result in small
output changes. In Figure 24 we demonstrate how small changes
to the input prompt may result in small changes to the output.
Furthermore, in Figure 25 we demonstrate that small changes to
the input mask (making it larger/smaller) may also change the
output result. Lastly, in Figure 26 we performed small input changes:
rotating the image by 5° and performing a blurring by a Gaussian
kernel with 𝜎 = 2 standard deviation and kernel size 𝑘 = 8. As we
can see, the outputs may change due to these input changes.

E SOCIETAL IMPACT
Lowering the barrier for content manipulations is a mixed blessing:
on the one hand, it democratizes content creation, enhances creativ-
ity, and enables new applications. On the other hand, it can be used
in a nefarious manner for generating fake news, harassing, bullying,
and causing bad psychological and sociological effects [Fried et al.
2020]. In addition, the LDM model was trained on LAION-400M
dataset [Schuhmann et al. 2021] that consists of 400M text-image
pairs that were collected from the internet. This dataset is non-
curated, and as such may contain discomforting and disturbing
content that may be repeated by the model. Moreover, it was shown
[Nichol et al. 2021] that text-to-image generative models may in-
herit some of the biases in the training data, hence editing images
guided by a text prompt may also suffer from this problem.

We strongly believe that despite these drawbacks, producing bet-
ter content creation methods will produce a net positive to society.
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Fig. 18. Noise artifacts: Given the input image (a) and mask (b) with some guiding text, Blended Diffusion produces noticeable pixel-level noise artifacts (c),
in contrast to our method (d).
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Fig. 19. Comparison to baselines: A comparison with Local CLIP-guided diffusion [Crowson 2021], PaintByWord++ [Bau et al. 2021; Crowson et al. 2022],
Blended Diffusion [Avrahami et al. 2022b], GLIDE-filtered [Nichol et al. 2021] and DALL·E 2 [Ramesh et al. 2022].
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Fig. 20. Reconstruction loss ablation: Removing the foreground term in Equation (3) results in slightly less vivid colors.
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Fig. 21. Precision & Diversity Experiment: An example of a random image and mask, and the generated results, used in our quantitative evaluation.
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Fig. 22. Ranking effectiveness:We generate 24 prediction results and rank them using the CLIP [Radford et al. 2021] model. The top 20% of results are
constantly better than the bottom 20%, but not at the granularity of a single image — the first image is not always strictly better than the second.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2023.



Blended Latent Diffusion • 1:23
“c
or
gi

pa
in
tin

g”
“a

m
an

w
ith

a
ye
llo

w
sw

ea
te
r”

“c
uc
um

be
r”

“w
hi
te

cl
ou

ds
”

Input image Input mask Without ranking With ranking

Fig. 23. Ranking effectiveness in Blended Diffusion: The CLIP ranking is a crucial part of Blended Diffusion [Avrahami et al. 2022b]. When generating a
single prediction result, the output rarely corresponds to the input text prompt.
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Fig. 24. Prompt sensitivity: Our method is somewhat sensitive to the input prompt — the results may change slightly for small input prompt changes.

“s
to
ne
s”

“a
bl
ue

ba
ll”

“a
be
ac
h”

input + mask result input + mask result input + mask result

Fig. 25. Mask sensitivity: Our method is somewhat sensitive to the input mask — the results may change for small input mask changes.
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Fig. 26. Image sensitivity: Our method is somewhat sensitive to the input images — the results may change for small input image changes such as rotation
and blur.
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