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Figure 1: Break-A-Scene: Given a single image withmultiple concepts, annotated by loose segmentation masks (middle), our
method can learn a distinct token for each concept, and use natural language guidance to re-synthesize the individual concepts
(right) or combinations of them (left) in various contexts.

ABSTRACT
Text-to-image model personalization aims to introduce a user-
provided concept to the model, allowing its synthesis in diverse
contexts. However, current methods primarily focus on the case of
learning a single concept from multiple images with variations in
backgrounds and poses, and struggle when adapted to a different
scenario. In this work, we introduce the task of textual scene decom-
position: given a single image of a scene that may contain several
concepts, we aim to extract a distinct text token for each concept,
enabling fine-grained control over the generated scenes. To this end,
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we propose augmenting the input image with masks that indicate
the presence of target concepts. These masks can be provided by
the user or generated automatically by a pre-trained segmentation
model. We then present a novel two-phase customization process
that optimizes a set of dedicated textual embeddings (handles), as
well as the model weights, striking a delicate balance between accu-
rately capturing the concepts and avoiding overfitting. We employ
a masked diffusion loss to enable handles to generate their assigned
concepts, complemented by a novel loss on cross-attention maps to
prevent entanglement. We also introduce union-sampling, a train-
ing strategy aimed to improve the ability of combining multiple
concepts in generated images. We use several automatic metrics to
quantitatively compare our method against several baselines, and
further affirm the results using a user study. Finally, we showcase
several applications of our method.
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1 INTRODUCTION
Humans have a natural ability to decompose complex scenes into
their constituent parts and envision them in diverse contexts. For
instance, given a photo of a ceramic artwork depicting a creature
seated on a bowl (Figure 1), one can effortlessly imagine the same
creature in a variety of different poses and locations, or envision the
same bowl in a new setting. However, today’s generative models
struggle when confronted with this type of task.

Recent works [Gal et al. 2022; Ruiz et al. 2023] suggested per-
sonalizing large-scale text-to-image models [Rombach et al. 2021;
Saharia et al. 2022]: given several images of a single concept, they
optimize newly-added dedicated text embeddings [Gal et al. 2022]
or fine-tune the model weights [Ruiz et al. 2023] in order to en-
able synthesizing instances of this concept in novel contexts. These
works initiated a vibrant research field, surveyed in more detail in
Section 2 and summarized in Table 1.

In this work, we introduce the new scenario of textual scene
decomposition: given a single image of a scene that may contain
multiple concepts of different kinds, our goal is to extract a dedi-
cated text token for each concept. This enables generation of novel
images from textual prompts, featuring individual concepts or com-
binations of multiple concepts, as demonstrated in Figure 1.

The personalization task can be inherently ambiguous: it is not
always clear which concepts we intend to extract/learn. Previous
works [Gal et al. 2022; Ruiz et al. 2023] resolve this ambiguity
by extracting a single concept at a time, utilizing several different
images that depict the concept in different contexts. However, when
switching to a single image scenario, other means are necessary
to disambiguate the task. Specifically, we propose to augment the
input image with a set of masks, indicating the concepts that we aim
to extract. These masks may be loose masks provided by the user,
or generated by an automatic segmentation method (e.g., [Kirillov
et al. 2023]). However, as demonstrated in Figure 2, adapting the
two main approaches, TI [Gal et al. 2022] and DB [Ruiz et al. 2023],
to this setting reveals a reconstruction-editability tradeoff: while
TI fails to accurately reconstruct the concepts in a new context, DB
loses the ability to control the context due to overfitting.

In this work, we propose a novel customization pipeline that
effectively balances the preservation of learned concept identity
with the avoidance of overfitting. Our pipeline, depicted in Figure 3,
consists of two phases. In the first phase, we designate a set of
dedicated text tokens (handles), freeze the model weights, and
optimize the handles to reconstruct the input image. In the second

Project page is available at: https://omriavrahami.com/break-a-scene/

Table 1: Scenarios of previouswork onmodel personalization.
Our method is the first to offer personalization ofmultiple
concepts given a single input image. An extended version of
this table, that also includes the concurrent works, is avail-
able in the supplementary materials.

Method Single input Multi-concept
image output

Textual Inversion [Gal et al. 2022] ✗ ✗

DreamBooth [Ruiz et al. 2023] ✗ ✗

Custom Diffusion [Kumari et al. 2023] ✗ ✓

ELITE [Wei et al. 2023] ✓ ✗

E4T [Gal et al. 2023] ✓ ✗

Ours ✓ ✓
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Figure 2: Reconstruction-editability tradeoff: Given a single
input image along with masks, and the prompt “A photo of a
[𝑣1] and [𝑣2] at the beach”, (masked) Textual Inversion [Gal
et al. 2022] generates an image of two objects on a beach, but
fails to preserve their identities. (Masked) DreamBooth [Ruiz
et al. 2023] preserves the identities well, but fails to place
them on a beach. Ourmethod is able to generate a convincing
image of two objects on a beach, which closely resemble the
objects in the input image.

phase, we switch to fine-tuning themodel weights, while continuing
to optimize the handles.

We also recognize that in order to generate images exhibiting
combinations of concepts, the customization process cannot be
carried out separately for each concept. This observation leads us
to introduce union-sampling, a training strategy that addresses this
requirement and enhances the generation of concept combinations.

A crucial focus of our approach is on disentangled concept ex-
traction, i.e., ensuring that each handle is associated with only a
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single target concept. To achieve this, we employ a masked version
of the standard diffusion loss, which guarantees that each custom
handle can generate its designated concept; however, this loss does
not penalize the model for associating a handle with multiple con-
cepts. Our main insight is that we can penalize such entanglement
by additionally imposing a loss on the cross-attention maps, known
to correlate with the scene layout [Hertz et al. 2022]. This additional
loss ensures that each handle attends only to the areas covered by
its target concept.

We propose several automatic metrics for our task and use them
to compare our method against the baselines. In addition, we con-
duct a user study and show that our method is also preferred by
human evaluators. Finally, we present several applications of our
method.

In summary, our contributions are: (1) we introduce the new
task of textual scene decomposition, (2) propose a novel approach
for this setting, which learns a set of disentangled concept handles,
while balancing between concept fidelity and scene editability, and
(3) propose several automatic evaluation metrics and use them, in
addition to a user study, to demonstrate the effectiveness of our
method.

2 RELATEDWORK
Text-to-image synthesis. The field of text-to-image synthesis

has seen immense progress in recent years. The initial approaches
utilized RNNs [Mansimov et al. 2016], GANs [Reed et al. 2016; Xu
et al. 2018; Zhang et al. 2017, 2018] and transformers [Gafni et al.
2022; Ramesh et al. 2021]. However, diffusion-based models [Ho
et al. 2020; Sohl-Dickstein et al. 2015; Song et al. 2020; Song and
Ermon 2019] emerged as superior for text-to-image generation
[Chang et al. 2023; Ramesh et al. 2022; Rombach et al. 2021; Saharia
et al. 2022; Yu et al. 2022].

Alongside these advancements, text-driven image editing has
emerged, enabling global [Brooks et al. 2023; Crowson et al. 2022;
Kwon and Ye 2022; Meng et al. 2021; Patashnik et al. 2021; Tu-
manyan et al. 2023; Valevski et al. 2022] and local manipulations
[Avrahami et al. 2023a, 2022; Bar-Tal et al. 2022; Bau et al. 2021;
Couairon et al. 2022; Kawar et al. 2023; Nichol et al. 2021; Patashnik
et al. 2023; Sheynin et al. 2022; Wang et al. 2023]. In addition, dif-
fusion models have also been employed for video generation [Ho
et al. 2022; Singer et al. 2022], video editing [Molad et al. 2023],
scene generation [Avrahami et al. 2023b; Bar-Tal et al. 2023], mesh
texturing [Richardson et al. 2023], typography generation [Iluz et al.
2023], and solving inverse problems [Horwitz and Hoshen 2022;
Saharia et al. 2021a,b].

Cross-attention. Prompt-to-prompt [Hertz et al. 2022] utilizes
cross-attention maps in text-to-image diffusion models for manip-
ulating generated images, later extended to handle real images
through inversion [Mokady et al. 2023]. Attend-and-excite [Chefer
et al. 2023] use cross-attention maps as an explainability-based
technique [Chefer et al. 2020, 2021] to adjust text-to-image genera-
tions. In our work, we employ cross-attention maps to disentangle
learned concepts; however, our work focuses on extracting textual
handles from a scene and remixing them into completely novel
scenes, rather than editing the input image.

Inversion. In the realm of generative models, inversion [Xia et al.
2021] is the task of finding a code within the latent space of a gener-
ator [Goodfellow et al. 2014; Karras et al. 2019, 2020] that faithfully
reconstructs a given image. Inversion may be accomplished via
direct optimization of the latent code [Abdal et al. 2019, 2020; Zhu
et al. 2020a] or by training a dedicated encoder [Alaluf et al. 2021;
Pidhorskyi et al. 2020; Richardson et al. 2020; Tov et al. 2021; Zhu
et al. 2020b]. PTI [Roich et al. 2021] follows the latent optimization
with refinement of the model weights [Bau et al. 2019]. In this study,
we also employ a two-stage approach wherein we first optimize
only the textual embeddings of the target concepts, followed by
jointly training the embeddings and the model weights.

Personalization. The task of personalization aims to identify a
user-provided concept that is not prevalent in the training data for
discriminative [Cohen et al. 2022] or generative [Nitzan et al. 2022]
tasks. Textual Inversion (TI) [Gal et al. 2022], and DreamBooth (DB)
[Ruiz et al. 2023] are two seminal works that address personalization
of text-to-image models: given several images of a single visual
concept, they learn to generate this concept in different contexts. TI
introduces a new learnable text token and optimizes it to reconstruct
the concept using the standard diffusion loss, while keeping the
model weights frozen. DB, on the other hand, reuses an existing
rare token, and fine-tunes the model weights to reconstruct the
concept. Custom Diffusion [Kumari et al. 2023] fine-tunes only a
subset of the layers, while LoRA [Hu et al. 2021; Ryu 2022] restricts
their updates to rank 1. Perfusion [Tewel et al. 2023] also performs
a rank 1 update along with an attention key locking mechanism.

Concurrently with our work, SVDiff [Han et al. 2023] introduces
an efficient personalization method in the parameter space based on
singular-value decomposition of weight kernels. They also propose
a mixing and unmixing regularization that enables generating two
concepts next to each other. In contrast to our method, SVDiff re-
quires several images for each of the concepts, while we operate on
a single image containing multiple concepts. Furthermore, SVDiff’s
automatic augmentation allows for the placement of two objects
side by side, while our method enables arbitrary placement of up
to four objects.

Most recently, fast personalization methods were introduced
that employ dedicated encoders [Chen et al. 2023; Gal et al. 2023;
Jia et al. 2023; Shi et al. 2023; Wei et al. 2023] and can also handle a
single image. Among these, only ELITE [Wei et al. 2023] is publicly
available, and we include it in our comparisons in Section 4.1. XTI
[Voynov et al. 2023] extends TI to utilize a richer inversion space.
As shown in Table 1, our approach stands out from the existing
personalization methods by addressing the challenge of coping
with multiple concepts within a single image. To the best of our
knowledge, this is the first work to tackle this task.

3 METHOD
Given a single input image 𝐼 and a set of 𝑁 masks {𝑀𝑖 }𝑁𝑖=1, indicat-
ing concepts of interest in the image, we aim to extract 𝑁 textual
handles {𝑣𝑖 }𝑁𝑖=1, s.t. the 𝑖th handle, 𝑣𝑖 , represents the concept indi-
cated by𝑀𝑖 . The resulting handles can then be used in text prompts
to guide the synthesis of new instances of each concept, or novel
combinations of several concepts, as demonstrated in Figure 1.
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Figure 3: Method overview: our method consists of four key components: (1) in order to train the model to support different
combinations of generated concepts, we employ a union-sampling mechanism, where a random subset of the tokens is sampled
each time. In addition, (2) in order to avoid overfitting, we use a two-phase training regime, which starts by optimizing only the
newly-added tokens, with a high learning rate, and in the second phase we also train the model weights, using a lower learning
rate. A masked diffusion loss (3) is used to reconstruct the desired concepts. Finally, (4) in order to encourage disentanglement
between the learned concepts, we use a novel cross-attention loss.
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Figure 4: Cross-attention loss: given the input scene and the
text prompt “a photo of [𝑣1] and [𝑣2] at the beach”, we visual-
ize the cross-attention maps of the generated images by our
method with only the masked reconstruction loss of Equa-
tion (1) (top row), and after adding the cross-attention loss of
Equation (2) (bottom row). Adding the cross-attention loss
encourages each of the handles [𝑣1] and [𝑣2] to attend only to
its corresponding concept, which results with a disentangled
concepts’ generation.

Attempting to adapt TI or DB to extraction of multiple concepts
from a single image (by using masks, as explained in Section 4),
reveals an inherent reconstruction-editability tradeoff. As demon-
strated in Figure 2, TI enables embedding the extracted concepts in
a new context, but fails to faithfully preserve their identity, while
fine-tuning the model in DB captures the identity, at the cost of
losing editability, to a point of failing to comply with the guiding
text prompt. We observe that optimizing only individual tokens is
not expressive enough for good reconstruction, while fine-tuning
the model using a single image is extremely prone to overfitting.
In this work, we strive for a “middle ground” solution that would
combine the best of both worlds, i.e., would be able to capture the
identity of the target concepts without relinquishing editability. Our

approach combines four key components, as depicted in Figure 3
and described below.

Balancing between reconstruction and editability: We opti-
mize both the text embeddings and the model’s weights [Ryu 2022],
but do so in two different phases. In the first phase, the model is
frozen, while the text embeddings corresponding to the masked
concepts are optimized [Gal et al. 2022] using a high learning rate.
Thus, an initial approximate embedding is achieved quickly with-
out detracting from the generality of the model, which then serves
as a good starting point for the next phase. In the second phase,
we unfreeze the model weights and optimize them along with the
text tokens, using a significantly lower learning rate. This gentle
fine-tuning of the weights and the tokens enables faithful recon-
struction of the extracted concepts in novel contexts, with minimal
editability degradation.

Union-sampling: We further observe that if the above process
considers each concept separately, the resulting customized model
struggles to generate images that exhibit a combination of several
concepts (see Figure 7 and Section 4.1). Thus, we propose union-
sampling for each of the two optimization phases. Specifically, we
start by designating an initial textual embedding (handle) 𝑣𝑖 for
each concept indicated by mask𝑀𝑖 . Next, at each training step, we
randomly select a subset of 𝑘 ≤ 𝑁 concepts, 𝑠 = {𝑖1, . . . , 𝑖𝑘 } ⊆ [𝑁 ],
and construct a text prompt “a photo of [𝑣𝑖1 ] and . . . [𝑣𝑖𝑘 ]”. The
optimization losses described below are then computed with respect
to the union of the corresponding masks,𝑀𝑠 =

⋃
𝑀𝑖𝑘 .

Masked diffusion loss: The handles (and the model weights,
in the second phase) are optimized using a masked version of the
standard diffusion loss [Ryu 2022], i.e., by penalizing only over the
pixels covered by the concept masks:

Lrec = E𝑧,𝑠,𝜖∼N(0,1),𝑡
[
∥𝜖 ⊙ 𝑀𝑠 − 𝜖\ (𝑧𝑡 , 𝑡, 𝑝𝑠 ) ⊙ 𝑀𝑠 ∥22

]
, (1)

where 𝑧𝑡 is the noisy latent at time step 𝑡 , 𝑝𝑠 is the text prompt,
𝑀𝑠 is the union of the corresponding masks, 𝜖 is the added noise,
and, 𝜖\ is the denoising network. Using the masked diffusion loss



Break-A-Scene: Extracting Multiple Concepts from a Single Image SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

in pixel space encourages the process to faithfully reconstruct the
concepts. However, no penalty is imposed for associating a single
handle with multiple concepts, as demonstrated in Figure 7. Thus,
with this loss alone, the resulting handles fail to cleanly separate
between the corresponding concepts.

In order to understand the source of this issue, it is helpful to
examine the cross-attention maps between the learned handles and
the generated images, as visualized in Figure 4 (top row). It may
be seen that both handles [𝑣1] and [𝑣2] attend to the union of the
areas containing the two concepts in the generated image, instead
of each handle attending to just one concept, as we would have
liked.

Cross-Attention loss: We therefore introduce another loss term
that encourages the model to not only reconstruct the pixels of
the learned concepts, but also ensures that each handle attends
only to the image region occupied by the corresponding concept.
Specifically, as illustrated in Figure 3 (right), we utilize the cross-
attention maps for the newly-added tokens and penalize their MSE
deviation from the input masks. Formally, we add the following
term to loss in both training phases:

Lattn = E𝑧,𝑘,𝑡

[
∥𝐶𝐴\ (𝑣𝑖 , 𝑧𝑡 ) −𝑀𝑖𝑘 ∥22

]
, (2)

where 𝐶𝐴\ (𝑣𝑖 , 𝑧𝑡 ) is the cross-attention map between the token 𝑣𝑖
and the noisy latent 𝑧𝑡 . The cross attention maps are calculated
over several layers of the denoising UNet model (for more details,
please see the supplementary material). Thus, the total loss used is:

Ltotal = Lrec + _attnLattn, (3)

where _attn = 0.01. As can be seen in Figure 4 (bottom row), the
addition of Lattn to the loss succeeds in ensuring that [𝑣1] and [𝑣2]
attend to two distinct regions, corresponding to the appropriate
spatial locations in the generated image.

4 EXPERIMENTS
This section begins by adapting current text-to-image personaliza-
tion methods to suit our single-image problem setting, followed by
a qualitative comparison with our method. Next, we establish an
automatic pipeline to evaluate the effectiveness of our method and
compare it quantitatively to the baseline methods. Additionally, a
user study is conducted to substantiate the claim that our method
outperforms the baselines. Finally, we explore several applications,
demonstrating the versatility and usefulness of our approach.

4.1 Comparisons
Existing personalization methods, such as DreamBooth [Ruiz et al.
2023] and Textual Inversion [Gal et al. 2022], take multiple images
as input, rather than a single image with masks indicating the target
concepts. Applying such methods to a single image without such
indication results in tokens that do not necessarily correspond to
the concepts that we wish to learn. For more details and examples,
please see the supplementary material.

Thus, in order to conduct a meaningful comparison with these
previous methods, we first adapt them to our problem setting. This
is achieved by converting a single input image with several con-
cept masks into a small collection of image-text pairs, as shown in

Figure 6. Specifically, each pair is constructed by randomly choos-
ing a subset of concepts 𝑖1, . . . , 𝑖𝑘 , and placing them on a random
solid color background with a random flip augmentation. The text
prompt accompanying each such image is “a photo of [𝑣𝑖1 ] and ...
[𝑣𝑖𝑘 ]”. We refer to DB and TI trained on such image collections as
DB-m and TI-m, respectively.

Another personalization approach, Custom Diffusion [Kumari
et al. 2023] (CD), optimizes only the cross-attention weights of the
denoising model, as well as a newly-added text token. We adapt CD
to our problem setting using the same approach as above, and refer
to the adapted version as CD-m. In addition, ELITE [Wei et al. 2023],
trains encoders on a single image to allow fast personalization, and
also supports input masks. We use the official implementation of
ELITE to compare it with our method.

Qualitative comparisons. We start with a qualitative compar-
ison between our method and the baselines. As demonstrated in
Figure 9, TI-m and CD-m are able to generate images that follow
the text prompt, but struggle with preserving the concept identities.
DB-m preserves the identities well, but is not able to generate an
image that complies with the rest of the prompt. ELITE preserves
the identities better than TI-m and CD-m, but the reconstruction
is still not faithful to the input image, especially when trying to
generate more than one concept. Finally, our method is able to
generate images that preserve the identity as well as follow the text
prompt, and we demonstrate this ability with up to four different
concepts in a single image.

Quantitative comparisons. In order to evaluate our method
and the baselines quantitatively, we propose an automatic pipeline
to generate a large number of inputs. As a source for these inputs,
we use the COCO dataset [Lin et al. 2014], which contains images
along with their instance segmentation masks. We crop COCO
images into a square shape, and filter only those that contain at
least two segments of distinct “things” type, with each segment
occupying at least 15% of the image.We also filter out concepts from
COCO classes that do not have individual identities (e.g., oranges).
Then, in order to create a larger dataset, we pair each of these
inputs with a random text prompt and a random number of tokens,
yielding a total number of 5400 image-text pairs per baseline. For
more details and examples, please read the supplementary material.

For each of the baselines TI-m, CD-m, andDB-m,we convert each
input image and masks into a small image collection, as described
earlier. For ELITE, we used the official implementation that supports
an input mask. Next, we generate the results for each of the input
image-text pairs with all the baselines, as well as with our method.

We employ two evaluation metrics: prompt similarity and iden-
tity similarity. Prompt similarity measures the degree of correspon-
dence between the input text prompt and the generated image.
Specifically, we utilize the standard CLIP similarity metric [Radford
et al. 2021], i.e., the cosine between the normalized CLIP embed-
dings of the input prompt and the generated image. In each input
prompt, the special [𝑣𝑖 ] tokens have been replaced with the text
describing the corresponding class (e.g., “a photo of a cat at the
beach” instead of “a photo of [𝑣1] at the beach”, which was used to
create the image).

For the identity similarity metric, we must adapt the standard ap-
proach in order to deal with multiple subjects. A direct comparison
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Figure 5: Quantitative comparison: (Left) A scatter plot of different personalization methods in terms of prompt similarity
and identity similarity, generated as described in Section 4. DB-m preserves the identities, while compromising the prompt
similarity. TI-m and CD-m follow the prompt, while sacrificing identity similarity. Our method lies on the Pareto front by
balancing between the two extremes. We also plot ablated versions of our method: removing the first phase of our method
reduces prompt similarity, removing the masked diffusion loss significant degrades prompt similarity, while removing the
cross-attention loss or union sampling both degrade identity similarity. (Right) A scatter plot of human rankings of identity
and prompt similarities (collected using Amazon Mechanical Turk) exhibits similar trends.

“A photo of [V1]” “A photo of [V2] 
and [V3]” 

“A photo of [V1] 
and [V2] and [V3]” 

, ,
Inputs

Figure 6: Baseline adaptation: Given a single image with con-
cept masks, we construct a small collection of image-text
pairs by selecting a random subset of tokens each time, creat-
ing a text prompt in the format of “A photo of [𝑣𝑥 ] and [𝑣𝑦]
...”, masking out the background using the provided masks
and applying a random solid background.

between the input image and the generated image is bound to be
imprecise, because either image may contain multiple concepts: the
input image contains all the concepts, while the generated one will
typically contain a subset of them. Therefore, for each generated
image, we compare a masked version of the input image (using the
input mask from the COCO dataset) with a masked version of the
generated image. We obtained the masked version of the generated
image by leveraging MaskFormer [Cheng et al. 2021], a pre-trained
image segmentation model.

In addition, following Ruiz et al. [2023], we chose to extract the
image embeddings from the DINO model [Caron et al. 2021], as
it was shown [Ruiz et al. 2023] to better capture the identity of
objects, which aligns with the goals of personalization.

As demonstrated in Figure 5(left), there is an inherent trade-
off between identity similarity and prompt similarity, with DB-m
on one end, preserving the identity well, while sacrificing prompt
similarity. TI-m and CD-m are on the other end of the spectrum,
exhibiting high prompt similarity but low identity preservation. It

may be seen that ELITE also struggles with preservation of identi-
ties. Our method lies on the Pareto front, balancing between the
two requirements.

Ablation study. In addition, we conducted an ablation study,
which includes removing the first phase (TI) of our method, re-
moving the masked diffusion loss in Equation (1), removing the
cross-attention loss in Equation (2), and training the model to recon-
struct a single concept at each sample, instead of union-sampling.
As seen in Figure 5(left), removing the first phase causes a signifi-
cant degradation in prompt similarity, as the model tends to overfit.
Removing the masked loss also causes a significant prompt similar-
ity degradation, as the model tends to learn also the background of
the original image, which may override the guiding text prompt.
Removing the cross-attention loss yields a degradation of identity
similarities, because themodel does not learn to disentangle the con-
cepts, as explained in Section 3. Finally, removing union-sampling
degrades the ability of the model to generate images with multiple
concepts, thereby significantly reducing the identity preservation
score.

Figure 7 provides a visual comparison of the ablated cases. As
can be seen, removing the first training phase causes the model to
tend to ignore the target prompt. Removing the masked loss causes
the model to extract elements from the background together with
the masked concepts (note the vertical wooden poles present in
the generated images). Removing the cross-attention loss causes
the model to entangle between the concepts (the orange juice glass
appears, even when the prompt only asks for the bear). When
training without union sampling, the model struggles when asked
generating more than one concept. For additional visual examples,
please refer to the supplementary materials.
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Inputs Ours w/o Ours w/o Ours w/o Ours w/o Ours
two phases masked loss attention loss union sampling

“a photo of [𝑣2] with the Eiffel Tower in the background”

“a photo of [𝑣1] and [𝑣2] in the snow”

Figure 7: Qualitative ablation: we ablate our approach by removing the first training phase, removing the masked diffusion loss,
removing the cross-attention loss, and sampling a single concept at a time. As can be seen, when removing the first training
phase, the model overfits and fails to follow the guiding prompt, when removing the masked loss, the model tends to learn also
the background. Without the cross-attention loss, the model tends to entangle the concepts or replicate one of them. Finally,
when sampling a single concept at a time, the model struggles with generating images with multiple concepts.

User study. Lastly, we conducted a user study using the Amazon
Mechanical Turk (AMT) platform. We chose a random subset of the
automatically generated inputs from COCO, and asked the evalua-
tors to rate the identity preservation and the prompt similarity of
each result on a Likert scale of 1–5. When rating the prompt simi-
larity, evaluators were presented with the input text prompt where
the special [𝑣𝑖 ] tokens have been replaced with the text describ-
ing the corresponding class (as we did for the automatic prompt
similarity metric). The results of our method and all the baselines
were presented on the same page, and the evaluators were asked
to rate each of the images. For identity preservation, we showed
a masked version of the input image, containing only the object
being generated, next to each of the results, and asked the evaluator
to rank on the scale of 1–5 whether the images contain the same
object as in the masked input image. For more details and statistical
significance analysis, read the supplementary materials. As can be
seen in Figure 5(right), the human rankings provide an additional
evidence that our method lies on the Pareto front, balancing identity
preservation and prompt similarity.

4.2 Applications
In Figure 10 we present several applications and use cases demon-
strating the versatility of our method.

Image variations. Given a single image containing multiple
concepts of interest, once these are extracted using ourmethod, they
can be used to generate multiple variations of the image by simply
prompting the model with “a photo of [𝑣1] and [𝑣2] and ...”. As
demonstrated in Figure 10(a), the arrangement of the objects in the
scene, as well as the background, are different in each generation.

Entangled concept separation. Given a single image with com-
posite objects, one can decompose such objects into distinct con-
cepts. For example, as shown in Figure 10(b), given a single image
of a dog wearing a shirt, our method is able to separately learn the
dog and the shirt concepts. Thus, it is possible to generate images
of the dog without the shirt, or of a cat wearing that specific shirt.
Note how the dog’s body is not visible in the input image, yet the
strong priors of the diffusion model enable it to generate a plausible
body to go with the dog’s head.

Background extraction. In addition to learning various fore-
ground objects in the scene, we also learn the background as one
of the visual concepts. The background mask is automatically de-
fined as the complement of the union of all the input masks. As
demonstrated in Figure 10(c), the user can extract the specific beach
from the input image, and generate new objects on it. Please notice
the correct water reflections of the newly generated objects. We
used the same technique in Figure 1 (the white porcupine example).
Note that this application is different from inpainting, as the model
learns to generate variants of the background, e.g., the clouds in
Figure 10(c) and the subtle background change in Figure 1.

Local image editing. Once concepts have been extracted, one
may utilize an off-the-shelf text-driven local image editing method
in order to edit other images, e.g., Blended Latent Diffusion [Avra-
hami et al. 2023a, 2022]. This is demonstrated in Figure 10(d): after
extracting the concepts from the input scene of Figure 1, one may
provide an image to edit, indicate the regions to be edited, and pro-
vide a guiding text prompt for each region. Then, by using Blended
Latent Diffusion, we can embed the extracted concepts inside the
indicated regions, while preserving the rest of the image. For more
details on this approach, please refer to the supplementary material.
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Inputs “a photo of [𝑣3 ] “a photo of [𝑣1 ] and “a photo of [𝑣1 ] and
in the desert” [𝑣2 ] on the grass” [𝑣5 ] and [𝑣6 ] in the

the forest”

Figure 8: Limitations: our method suffers from several lim-
itations: (a) in some cases, the model does not learn to dis-
entangle between the lighting of the scene in the original
single image and the learned concepts, s.t. the lighting be-
come inconsistent with the target prompt. (b) In other cases,
the model learns to entangle between the pose of the objects
in the single input image and their identities, s.t. it is not able
to generate them with different poses, even when explicitly
being told to do so. (c) We found our method to work best
when used to extract up to four concepts; when trying to
extract more than that, our method tends to fail in learning
the objects’ identities. Credits: RebaSpike @ pixabay

This application is reminiscent of exemplar-based image editing
methods [Song et al. 2022; Yang et al. 2023] with two key differ-
ences: (1) our single example image may contain multiple concepts,
and (2) we offer an additional fine-grained textual control over each
of the edited regions.

5 LIMITATIONS AND CONCLUSIONS
We found our method to suffer from the following limitations: (a)
inconsistent lighting — because the input to our method is a sin-
gle image, our method sometimes struggles with disentangling
the lighting from the learned identities, e.g., the input image in
Figure 8(a) was taken in broad daylight, and the model learns to
generate the extracted concepts with daylight lighting, even when
the user prompts it specifically with different environments (coral
reef, dark cave and dark night). (b) Pose fixation — another prob-
lem that stems from the single input is that sometimes the model
learns to entangle between the object pose and its identity, e.g., the
input image in Figure 8(b) contains a dog looking upward with an
open mouth, and the model generates the dog in this position in

all the images, even when instructed specifically to refrain from
doing so. (c) Underfitting of multiple concepts — we found that
our method works best when given up to four concepts, e.g., the
input in Figure 8(c) contains six objects, and the model struggles
when learning that many identities. (d) Significant computational
cost and parameter usage — our method takes about 4.5 minutes
to extract the concepts from a single scene and to fine-tune the
entire model. Incorporating recent faster approaches that are more
parameter-efficient (e.g., Custom Diffusion) did not work, which
limits the applicability of this approach in time-sensitive scenar-
ios. Improving the model cost is an appealing direction for further
research.

In conclusion, in this paper we address the new scenario of
extracting multiple concepts from a single image. We hope that it
will serve as a building block for the future of the field, as generative
AI continues to evolve and push the boundaries of what is possible
in the realm of creative expression.



Break-A-Scene: Extracting Multiple Concepts from a Single Image SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Inputs TI-m DB-m CD-m ELITE Ours
[Gal et al. 2022] [Ruiz et al. 2023] [Kumari et al. 2023] [Wei et al. 2023]

“a photo of [𝑣1] standing on top of water”

“a painting of [𝑣1] and [𝑣2] in the style of The Starry Night”

“a photo of [𝑣1] sitting on a rock in the Grand Canyon”

“a photo of [𝑣1] and [𝑣2] and [𝑣3] next to a river”

“a photo of [𝑣1] and a Corgi on [𝑣4] in the forest”

“a photo of [𝑣1] and [𝑣2] and [𝑣3] and [𝑣4] at the beach”

Figure 9: A qualitative comparison between several baselines and our method. TI-m and CD-m struggle with preserving the
concept identities, while the images generated by DB-m effectively ignore the text prompt. ELITE preserves the identities
better than TI-m/CD-m, but the concepts are still not recognizable enough, especially when more than one concept is generated.
Finally, our method is able to preserve the identities as well as follow the text prompt, even when learning four different
concepts (bottom row).
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(a) Image Variations 

(b) Entangled Scene Decomposition

(d) Local Editing by Example

Inputs “A photo of [V1] and 
[V2] and [V3]”

Input image to edit

+ region to edit + region to edit

Inputs

Input scene

“A photo of a cat 
wearing [V2] in the 

forest”

“A photo of a [V1] 
running near Stonehenge”

“A photo of [V2] 
on a solid 

background”

“A photo of [V1] and 
[V2] and [V3]”

“A photo of [V1] and 
[V2] and [V3]”

“A photo of [V1] and 
[V2] and [V3]”

“A photo of [V1] 
on a solid 

background”

“A photo of  
[Vbg]”

“A painting of a [V1] 
eating a burger”

“A painting of a [V3]” Edit result

(c) Background Extraction

Input
Inputs “A photo of [Vbg]” “A photo a car at [Vbg]” “A photo an elephant  

at [Vbg]”
“A photo an lighthouse  

at [Vbg]”

Figure 10: Applications: our method can be used for other downstream tasks, such as generating image variations, decomposing
entangled concepts into their components, extracting the background from an existing scene, and locally editing an existing
image using off-the-shelf tools [Avrahami et al. 2023a, 2022]. Credits: Magda Ehlers @ pexels / Sam Lion @ pexels / pixabay /
Angela Roma @ pexels
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A ADDITIONAL EXPERIMENTS
In Appendix A.1 we start by providing additional results generated
by our method. Then, in Appendix A.2 we add additional qualitative
comparisons from our ablation study. Finally, in Appendix A.3 we
show the results of a naïve application of TI [Gal et al. 2022] and
DB [Ruiz et al. 2023] to our problem setting (multiple concepts from
a single image) without the adaptation discussed in our paper.

A.1 Additional Results
In Figure 11 we provide additional results of breaking a scene into
components and using them to re-synthesize novel images. Then,
in Figure 12 we provide additional examples of the localized image
editing application. Furthermore, in Figure 13 we provide more
examples of the entangled scene decomposition application. Then,
in Figure 14 we provide more examples of the image variations
application. Finally, in Figure 16 and Figure 17 we provide additional
qualitative comparisons of our method against the baselines.

A.2 Qualitative Ablation Study Results
As discussed in Section 4.1 in the main paper, we conducted an abla-
tion study, which includes removing the first phase in our two-phase
training scheme, removing the masked diffusion loss, removing the
cross-attention loss, and removing the union-sampling. As seen in
Figure 18 when removing the first training phase, the model tends
to generate images that do not correspond to the target text prompt.
In addition, when removing the masked diffusion loss, the model
tends to learn also the background of the original image, which
overrides the target text prompt. Furthermore, when removing the
cross-attention loss, the model tends to mix between the concepts
or replicate one of them. Finally, removing the union-sampling
degrades the ability of the model to generate images with multiple
concepts. In addition, increasing the probability of only one concept
during the union-sampling also has a similar effect of degrading
the multiple concepts generation ability.

A.3 Naïve Baselines
Existing personalization methods, such as DreamBooth (DB) [Ruiz
et al. 2023] and Textual Inversion (TI) [Gal et al. 2022] take multiple
images as input, rather than a single image with masks indicating
the target concepts. Applying these methods to a single image
without such indication results in tokens that do not necessarily
correspond to the concepts that we wish to learn. In Figure 15 we
provide a visual result of training TI and DB on a single image
with the text prompt “a photo of [𝑣1] and [𝑣2] ”. As expected, these
approach fails to disentangle between the concepts — TI learns an
arbitrary concept while DB overfits the input image.

Table 2: Personalization baselines comparison. Ourmethod is
the first to suggest a solution for the problem of single image
with multiple concepts personalization. This is an extended
version of Table 1 in the main paper that includes concur-
rent works. Only the first four methods have an open-source
implementation.

Method Single input Multi-concept
image output

Textual Inversion [Gal et al. 2022] ✗ ✗

Dreambooth [Ruiz et al. 2023] ✗ ✗

Custom Diffusion [Kumari et al. 2023] ✗ ✓

ELITE [Wei et al. 2023] ✓ ✗

E4T [Gal et al. 2023] ✓ ✗

SVDiff [Han et al. 2023] ✗ ✓

SuTI [Chen et al. 2023] ✗ ✗

Taming [Jia et al. 2023] ✓ ✗

InstantBooth [Shi et al. 2023] ✓ ✗

XTI [Voynov et al. 2023] ✓ ✗

Perfusion [Tewel et al. 2023] ✗ ✓

Ours ✓ ✓

B IMPLEMENTATION DETAILS
In the following section, we start by providing some implementation
details of our method. Next, we provide more details about the
automatic comparison dataset creation, as well as the automatic
metrics. Finally, we provide the full details of the user study we
conducted.

B.1 Method Implementation Details
We based our method, as well as the baselines (except ELITE [Wei
et al. 2023]) on Stable Diffusion V2.1 [Rombach et al. 2021] imple-
mentations of the HuggingFace diffusers library [von Platen et al.
2022]. For ELITE, we used the official implementation by the au-
thors [Wei 2023] that used Stable Diffusion V1.4, which we had to
use because their encoders were trained on this model embeddings.
In addition to these four baselines, many concurrent works were
proposed recently, as detailed in Table 2, none of which tackles the
problem of extracting multiple concepts from a single image.

As explained in Section 3 of the main paper, our method is di-
vided into two stages: in the first stage we optimize only the text
embeddings with a high learning rate of 5𝑒−4, while in the second
stage, we train both the UNet weights, and the text encoder weights
with a small learning rate of 2𝑒−6. For both stages, we used Adam
optimizer [Kingma and Ba 2014] with 𝛽1 = 0.9, 𝛽2 = 0.99 and a
weight decay of 1𝑒−8. For all of our experiments, we used 400 train-
ing steps for each one of the stages, which we found to work well
empirically. When applying the masked version of the baselines,
we used the corresponding learning rate and optimized parameters
as our method. We performed the union-sampling in both of the
training stages.

The UNet of the Stable Diffusion models consisted of a series of
self-attention layers followed by cross-attention layers that inject
the textual information into the image formation process. This is
done in various resolutions of 8, 16, 32, 64. As was shown in [Hertz
et al. 2022], these cross-attention layers also control the layout of
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Single input image Input masks “A photo of [𝑣1] on “A photo of [𝑣2] on “A photo of [𝑣3] on
a solid background” a solid background” a solid background”

“A photo of [𝑣𝑏𝑔]” “A photo of [𝑣1] and its “A photo of [𝑣1] sitting on “A photo of [𝑣1] sitting on “A photo of [𝑣2] on
child at the beach” an avocado in the desert” an avocado at [𝑣𝑏𝑔]” the road”

“A photo of [𝑣2] “A photo of a pile of [𝑣3] “A photo of a pile of [𝑣3] “A photo of [𝑣1] sleeping “A photo of [𝑣1] and
at [𝑣𝑏𝑔]” in a straw basket near in a straw basket inside [𝑣2] in the snow” [𝑣3] at Times Square”

the Eiffel Tower” at [𝑣𝑏𝑔]”

“A painting of [𝑣3] “A photo of [𝑣1] and [𝑣2] “A photo of a grumpy “A photo of a small “A black and white photo
inside [𝑣2] and [𝑣3] with flowers cat at [𝑣𝑏𝑔]” albino porcupine at [𝑣𝑏𝑔]” of [𝑣1] and [𝑣2] and [𝑣3]

in the background” at [𝑣𝑏𝑔]”

Figure 11: Additional break-a-scene results: a scene decomposed into 3 parts and a background, which are then re-synthesized
in different contexts and combinations.

the generated scene, and can be utilized for generating images with
the same structure but with different semantics, or edit generated
images. As explained in Section 3 of the main paper, we utilize
these cross-attention maps for disentangling between the learned
concepts. To this end, we average all the cross-attention maps
corresponding to each one of the newly-added personalized tokens

at resolution 16 × 16, which was shown by [Hertz et al. 2022] to
contains most of the semantics, and normalized them to range [0, 1].
For brevity, we refer to this normalized averages cross-attention
map as 𝐶𝐴\ (𝑣𝑖 , 𝑧𝑡 ), the cross-attention map between the token 𝑣𝑖
and the noisy latent 𝑧𝑡 .
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(a) Input scene (b) Input image to edit (c) Edit result 1 (d) Edit result 2 (e) Final result
+ “a photo of [𝑣3] ” + “a photo of [𝑣2] ” + “a photo of [𝑣1] ”

+ mask 1 + mask 2 + mask 3

(a) Input scene (b) Input image to edit (c) Edit result 1 (d) Edit result 2 (e) Final result
+ “a photo of [𝑣1] ” + “a photo of [𝑣2] ” + “a photo of [𝑣3] ”

+ mask 1 + mask 2 + mask 3

(a) Input scene (b) Input image to edit (c) Edit result 1 (d) Edit result 2 (e) Final result
+ “a photo of [𝑣1] ” + “a photo of [𝑣3] ” + “a photo of [𝑣2] ”

+ mask 1 + mask 2 + mask 3

Figure 12: Additional examples of local image editing: given an input scene (a), we extract the indicated concepts using our
method. Given an additional input image to edit (b) along with a mask indicating the edit area, and a guiding text prompt, we
use Blended Latent Diffusion [Avrahami et al. 2023a, 2022] to obtain the first edit result (c). The process (provide mask and
prompt, apply Blended Latent Diffusion) can be repeated (c–d), until the final outcome is obtained (e).

B.2 Automatic Dataset Creation
As explained in Section 4.1 in the main paper, we created an au-
tomated pipeline for creating a comparisons dataset and use it to
compare our method (quantitatively and via a user study). To this
end, we use COCO [Lin et al. 2014] dataset, which contains images
along with their instance segmentation masks. We crop COCO
images into a square shape, and filter only those that contain at
least two segments of distinct “things” type, with each segment
occupying at least 15% of the image. We also filter out concepts
from COCO classes that are hard to distinguish from each other
(orange, banana, broccoli, carrot, zebra, giraffe). Using this method,
we extracted 50 scenes of different types. Next, we paired each
of these inputs with a text prompt from a fixed list, e.g., “a photo
of {tokens} in the snow”, where {tokens} was iterated on all the

combinations of the powerset of the input tokens, yielding a to-
tal number of 5400 generations per baseline. Figure 17 presents a
qualitative comparison of the baselines against our method on this
automatically generated dataset.

The fixed formats that we used are:

• "a photo of {tokens} at the beach"
• "a photo of {tokens} in the jungle"
• "a photo of {tokens} in the snow"
• "a photo of {tokens} in the street"
• "a photo of {tokens} on top of a pink fabric"
• "a photo of {tokens} on top of a wooden floor"
• "a photo of {tokens} with a city in the background"
• "a photo of {tokens} with a mountain in the background"
• "a photo of {tokens} with the Eiffel tower in the background"
• "a photo of {tokens} floating on top of water"
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Input scene “a photo of [𝑣1] on “a photo of [𝑣2] on “a photo of [𝑣3] on “a photo of [𝑣1]
a solid background” a solid background” a table” swimming”

“a photo of a Labrador “a photo of a lion “a photo of [𝑣1] wearing “a photo of a pig “a photo of [𝑣1] wearing
wearing [𝑣2] ” wearing [𝑣3] ” [𝑣2] at the beach” wearing [𝑣2] and [𝑣3] ” [𝑣2] and [𝑣3] on

a wooden floor”

Input scene “a photo of [𝑣1] on “a photo of [𝑣2] on “a photo of [𝑣3] on “a photo of [𝑣1] taking
a solid background” a solid background” a solid background” a selfie in the desert”

“a photo of a Moai “a photo of a parrot “a photo of [𝑣1] and “a photo of [𝑣1] “a photo of an owl
statue wearing [𝑣2] ” wearing [𝑣3] ” [𝑣2] in the snow” wearing [𝑣3] near a lake” wearing [𝑣2] and [𝑣3] ”

Figure 13: Additional examples of entangled scene decomposition: given a single input image of several spatially-entangled
concepts, our method is able to disentangle them and generate novel images with them, separately or jointly.

As explained in Section 4.1 in the main paper, we focused on
two evaluation metrics: prompt similarity and identity similarity.
For calculating the prompt similarity we used CLIP [Radford et al.
2021] model ViT-L/14 [Dosovitskiy et al. 2020] implementation by
HuggingFace and calculated normalized cosine similarity of the

CLIP text embeddings of the input prompt (the tokens were re-
placed with the ground-truth classes) and CLIP image embedding
of the generated image. For calculating the identity similarity, we
offered a metric that supports the multi-subject case: for each gen-
eration we compare the masked version of the input image (by
the input mask from the COCO dataset) with a masked version of
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Input scene “a photo of [𝑣1] and “a photo of [𝑣1] and “a photo of [𝑣1] and “a photo of [𝑣1] and
[𝑣2] and [𝑣3] ” [𝑣2] and [𝑣3] ” [𝑣2] and [𝑣3] ” [𝑣2] and [𝑣3] ”

Input scene “a photo of [𝑣1] and “a photo of [𝑣1] and “a photo of [𝑣1] and “a photo of [𝑣1] and
[𝑣2] and [𝑣3] ” [𝑣2] and [𝑣3] ” [𝑣2] and [𝑣3] ” [𝑣2] and [𝑣3] ”

Input scene “a photo of [𝑣1] and “a photo of [𝑣1] and “a photo of [𝑣1] and “a photo of [𝑣1] and
[𝑣2] and [𝑣3] ” [𝑣2] and [𝑣3] ” [𝑣2] and [𝑣3] ” [𝑣2] and [𝑣3] ”

Figure 14: Additional examples of image variations applications: given a single input image of several concepts, our method is
able to generate many variations of the image. Credits: pxhere

the generated image, which we acquire by utilizing a pre-trained
image segmentation model MaskFormer [Cheng et al. 2021] that
was trained on COCO panoptic segmentation (large-sized version,
SWIN [Liu et al. 2021] backbone) implemented by HuggingFace. For
the image embeddings comparison, we used DINO model [Caron
et al. 2021] (base-sized model, patch size 16) that was shown [Ruiz
et al. 2023] to better encompass the object’s identity.

B.3 User Study Details
As described in Section 4.1 in the main paper, we conducted a user
study employing the Amazon Mechanical Turk (AMT) in order
to assess the human perception of the metrics of interest: prompt
similarity and identity similarity. For assessing the prompt corre-
spondence, we instructed the workers “For each of the following
images, please rank on a scale of 1 to 5 its correspondence to this
text description: {PROMPT}” where {PROMPT} is the modified text
prompt resulted by replacing the special token with the class textual
token (e.g., “a photo of a cat at the beach” instead of “a photo of [𝑣1]
at the beach” which was used to create the image). All the baselines,

as well as our method, were presented in the same page, and the
evaluators rated each result by a slider from 1 (“Do not match at
all”) to 5 (“Match perfectly ”). For assessing identity similarity, we
showed a masked version of the input image that contains only
the object being generated, put it next to each one of the baseline
results, and instructed the workers “For each of the following image
pairs, please rank on a scale of 1 to 5 if they contain the same object
(1 means that they contain totally different objects and 5 means
that they contain exactly the same object). The images can have
different backgrounds”. The questions were presented to the raters
in a random order, and we collected three ratings per question,
resulting in 1215 ratings per task (prompt similarity/identity simi-
larity). The time allotted per image-pair task was one hour, to allow
the raters to properly evaluate the results without time pressure.

We conducted a statistical analysis of our user study by validat-
ing that the difference between all the conditions is statistically
significant using Kruskal-Wallis [Kruskal and Wallis 1952] test
(𝑝 < 10−213). In addition, we used Tukey’s honestly significant
difference procedure [Tukey 1949] to show that the comparison of
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“a photo of [𝑣1] “a photo of [𝑣2] “a photo of [𝑣1] and
at the beach” at the beach” [𝑣2] at the beach”

Figure 15: Naive TI and DB adaptations: given an (a) input
scene, trying naïvely running (b) TI and (c) DB on the input
image. As expected, these approach fails to disentangle be-
tween the concepts — TI learns an arbitrary concept while DB
overfits the input image. On the other hand, (d) our method
is able to learn the identity of the concepts while taking into
account the text prompt.

Table 3: Statistical analysis. We use Tukey’s honestly signifi-
cant difference procedure [Tukey 1949] to test whether the
differences between mean scores in our user study are statis-
tically significant.

Method 1 Method 2 Prompt similarity Identities similarity
p-value p-value

TI-m Ours 𝑝 < 10−10 𝑝 < 10−10
DB-m Ours 𝑝 < 0.05 𝑝 < 10−10
CD-m Ours 𝑝 < 10−7 𝑝 < 10−10
ELITE Ours 𝑝 < 10−10 𝑝 < 10−10

our method against all the baselines is statistically significant, as
detailed in Table 3. The means and variances of the user study are
reported in Table 4.

Table 4: Users’ rankings means and variances. the means and
variances of the rankings that are reported in the user study.

Method Identity similarity Prompt similarity

TI-m 2.69 ± 1.3 3.88 ± 1.21
DB-m 3.97 ± 0.95 2.37 ± 1.11
CD-m 2.47 ± 1.3 4.08 ± 1.12
ELITE 3.05 ± 1.31 3.53 ± 1.31
Ours 3.56 ± 1.27 3.85 ± 1.21

B.4 Blended Latent Diffusion Integration
As explained in Section 4.2 in the main paper, in order to edit an
image using the extracted concepts from another image, we utilized
Blended Latent Diffusion [Avrahami et al. 2023a, 2022] off-the-shelf
text-driven image editing method. As shown in Figure 12, we can
perform it in an iterative manner, editing the image region-by-
region. That way, we can edit the image in an elaborated manner
by giving a different text prompt per region.

C SOCIETAL IMPACT
Our method may help democratizing content creation, empowering
individuals with limited artistic skills or resources to produce visu-
ally engaging content. This may not only open up opportunities for
individuals who were previously excluded, but also foster a more
diverse and inclusive creative landscape.

In addition, it can help generate visuals that align with specific
rare cultural contexts, where the input may be scarce and contain
a single image. This may enhance cultural appreciation, foster a
sense of belonging, and promote intercultural understanding.

On the other hand, our method, may cause intellectual property
and copyright issues when being used on an existing copyrighted
content as reference. In addition, malicious users can exploit this
model to create realistic but fabricated images, potentially deceiving
other individuals.
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Inputs TI-m DB-m CD-m ELITE Ours
[Gal et al. 2022] [Ruiz et al. 2023] [Kumari et al. 2023] [Wei et al. 2023]

“a photo of [𝑣1] raisng its hand near the Great Pyramid of Giza”

“a photo of a lemur earing [𝑣2] in the park”

“a photo of [𝑣1] and [𝑣2] in the desert”

“a photo of [𝑣3] standing near the Golden Gate Bridge”

“a photo of [𝑣1] and [𝑣2] in the desert”

“a photo of [𝑣1] and [𝑣2] and [𝑣3] and [𝑣4] in the street”

Figure 16: A qualitative comparison between several baselines and our method. As can be seen, TI-m and CD-m struggle with
preserving the concept identities, while the images generated by DB-m effectively ignore the text prompt. ELITE preserves the
identities better than TI-m/CD-m, but the concepts are still not recognizable enough, especially when more than one concept is
generated. Finally, our method is able to preserve the identities as well as to follow the text prompt, even when learning four
different concepts (bottom row).
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Inputs TI-m DB-m CD-m ELITE Ours
[Gal et al. 2022] [Ruiz et al. 2023] [Kumari et al. 2023] [Wei et al. 2023]

“a photo of [𝑣2] floating on top of water”

“a photo of [𝑣1] and [𝑣2] on top of a wooden floor”

“a photo of [𝑣2] with the Eiffel Tower in the background”

“a photo of [𝑣1] and [𝑣2] in the snow”

“a photo of [𝑣2] with a city in the background”

“a photo of [𝑣1] and [𝑣2] with a mountain in the background”

Figure 17: Automatic dataset qualitative comparison: we compare our method qualitatively against the baselines on the dataset
that was generated automatically, as explained in Appendix B.2. As we can see, TI-m and CD-m struggle with preserving
the concept identities, while DB-m struggle with generating an image the corresponds to the text prompt. ELITE is better
preserving the identities than TI-m/CD-m, but they are still not recognizable enough, especially when trying to generate more
than one concept. Finally, our method is able to preserve the identities as well as correspond to the text prompt, and even
support generating up to four different concepts.
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Inputs Ours w/o Ours w/o Ours w/o Ours w/o Ours
two phases masked loss attention loss union sampling

“a photo of [𝑣2] floating on top of water”

“a photo of [𝑣1] and [𝑣2] on top of a wooden floor”

“a photo of [𝑣1] with the Eiffel Tower in the background”

“a photo of [𝑣1] and [𝑣2] in the snow”

“a photo of [𝑣2] with a city in the background”

“a photo of [𝑣1] and [𝑣2] with a mountain in the background”

Figure 18: Qualitative ablation study: we conduct an ablation study by removing the first phase in our two-phase training
regime, removing the masked diffusion loss, removing the cross-attention loss, and removing the union-sampling. As can be
seen, when removing the first training phase, the model tends to correspond less to the input text prompt. In addition, when
removing the masked loss, the model tends to learn also the background, which diminishes the target prompt correspondence.
Furthermore, when removing the cross-attention loss, the model tends to mix between the concepts or replicate one of them.
Finally, when removing the union-sampling, the model struggles with generating images with multiple concepts.
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