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Fig. 1. DiffUHaul: Given a real image with multiple objects (e.g., a cat and a rock), our method is able to seamlessly drag each of the objects to an arbitrary
location within the image while preserving the foreground and background appearance.

Text-to-image diffusion models have proven effective for solving many im-
age editing tasks. However, the seemingly straightforward task of seamlessly
relocating objects within a scene remains surprisingly challenging. Exist-
ing methods addressing this problem often struggle to function reliably
in real-world scenarios due to lacking spatial reasoning. In this work, we
propose a training-free method, dubbed DiffUHaul, that harnesses the spatial
understanding of a localized text-to-image model, for the object dragging
task. Blindly manipulating layout inputs of the localized model tends to
cause low editing performance due to the intrinsic entanglement of object
representation in the model. To this end, we first apply attention masking
in each denoising step to make the generation more disentangled across
different objects and adopt the self-attention sharing mechanism to preserve
the high-level object appearance. Furthermore, we propose a new diffusion
anchoring technique: in the early denoising steps, we interpolate the at-
tention features between source and target images to smoothly fuse new
layouts with the original appearance; in the later denoising steps, we pass
the localized features from the source images to the interpolated images to
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retain fine-grained object details. To adapt DiffUHaul to real-image editing,
we apply a DDPM self-attention bucketing that can better reconstruct real
images with the localized model. Finally, we introduce an automated evalu-
ation pipeline for this task and showcase the efficacy of our method. Our
results are reinforced through a user preference study.
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1 INTRODUCTION
Think about a digital artist who recently employed an advanced
generative model to craft an image featuring a Persian cat alongside
a rock, as in Figure 1. All that is needed for their creation to achieve
perfection is for the cat (or the rock) to be moved slightly. Despite
the conceptual simplicity of such a task, seamlessly dragging objects
in an image is surprisingly challenging for current generative image
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Input Dragging the puppy from left to right (→)

Fig. 2. Object Dragging Robustness. When dragging a puppy in a com-
plex environment (particularly with its reflection in the water and ripples
nearby) to different locations along from left to right, previous method
DiffEdit [Mou et al. 2024] struggles with the editing traces left in its original
location, while our method demonstrates a more robust behavior.

editing methods [Brooks et al. 2023; Hertz et al. 2022]. In this work,
we propose a novel training-free solution for this scenario.

Current methods that tackle this problem rely on time-consuming
LoRA training per image [Shi et al. 2023], training a designated
model on a large dataset [Chen et al. 2023a; Yang et al. 2022] or
utilizing classifier-free guidance (CFG) with specific objectives [Ep-
stein et al. 2023; Mou et al. 2023, 2024]. However, these methods are
not robust and struggle to operate reliably in a real-world setting.
For example, as can be seen in Figure 2, DiffEdit [Mou et al. 2024]
suffers from artifacts of traces of the puppy in its original location,
while our method demonstrates a more robust behavior.

Recently, several localized text-to-image models were developed
by the community that add spatial controllability to the task of
text-to-image generation [Avrahami et al. 2023c; Li et al. 2023; Nie
et al. 2024; Yang et al. 2023; Zhang et al. 2023; Zheng et al. 2023].
A natural question is then whether the localized understanding
of the 2D pixel world in such models can be harnessed for the
task of object dragging. Hence, we examine the disentanglement
properties of such models, and propose a series of modifications that
allow them to serve as a backbone for drag-and-drop movement of
objects within an image. Specifically, we use the recently introduced
BlobGEN [Nie et al. 2024] model, and demonstrate that its spatial
understanding can enable significantly more robust object dragging
without requiring fine-tuning or training.

In pursuit of our solution, we begin by revealing an entanglement
problem in the localized text-to-image models, through which the
prompt-based localized controls of different image regions interfere
with each other.We trace the root cause to the commonly used Gated
Self-Attention layers [Li et al. 2023], where each individual layout
embedding are free to attend to all the visual features.We propose an
inference-time masking-based solution, named gated self-attention
masking, and show that improving the model disentanglement leads
to better object dragging performance.
Next, specially for the object dragging task, we first adopt the

commonly-used self-attention sharing mechanism [Cao et al. 2023]
to preserve the high-level object appearance. To better transfer the
fine-grained object details from source images to target images and

better harness spatial understanding of the model, we propose a
novel soft anchoring mechanism: in early denoising steps, which
control the object shape and scene layout in an image, we inter-
polate the self-attention features of the source image and those of
the target image with a coefficient relative to the diffusion time
step. This process promotes a smooth fusion between the target
layout and source appearance. Then, in later denoising steps, which
control the fine-grained visual appearance in an image, we update
the interpolated attention features from the corresponding features
in the source image via the nearest-neighbor copying.

To adapt our method to real-image editing, we further require an
inversion solution that is compatible with the localized method. We
find that the standard DDIM inversion [Song et al. 2020] struggles
to reconstruct the image faithfully, even when not using classifier-
free guidance [Ho 2022]. Hence, we propose a simple DDPM self-
attention bucketing technique that adds noise to the reference image
independently in each diffusion step, and uses the noisy images to
extract the self-attention outputs as the source attention features.
This DDPM bucketing does not accumulate reconstruction errors
along the denoising process and preserves details for real images.
Finally, we offer automatic metrics for our problem to assess

different aspects of the editing operations, and use them for an
extensive comparison that demonstrates the effectiveness of our
method over the baselines. In addition, we conduct a user study and
show that our method is also preferred by human evaluators.
In summary, our contributions are: (1) we show that the spatial

understanding of a localized text-to-image model can be effectively
harnessed to tackle the object dragging task, (2) we reveal an en-
tanglement problem in the gated self-attention layers and offer an
inference-time solution, (3) we introduce a novel soft anchoring
mechanism that fuses the source object appearances and the target
scene layouts during the denoising process, (4) we show that DDPM
self-attention bucketing suffices for real image editing, and finally
(5) we develop automatic metrics to the task of object dragging and
use them to evaluate our method quantitatively, in addition to a
user study, to demonstrate its effectiveness.

2 RELATED WORK
Localized text-to-image models. Recently, text-to-image diffu-

sion models [Ho et al. 2020; Ramesh et al. 2022; Rombach et al. 2021;
Sohl-Dickstein et al. 2015; Song et al. 2020; Song and Ermon 2019; Yu
et al. 2022] became a foundational tool for creative tasks [Avrahami
et al. 2023d; Frenkel et al. 2024; Molad et al. 2023; Richardson et al.
2023]. To add spatial control to existing text-to-image models, some
works suggested training a designated localization component to
take in visual layouts [Avrahami et al. 2023c; Li et al. 2023; Nie
et al. 2024; Yang et al. 2023; Zhang et al. 2023; Zheng et al. 2023]
while others offer training-free methods that incorporate the spa-
tial conditioning into the diffusion sampling process [Bar-Tal et al.
2023; Chefer et al. 2023; Chen et al. 2023b; Feng et al. 2022; Phung
et al. 2023]. In this work, we utilize BlobGEN [Nie et al. 2024] as
our base model since it has shown better spatial understanding and
generation quality.

Text-to-image editing. Soon after the emergence of text-to-
image diffusion models, a plethora of methods were offered for
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various image editing tasks [Avrahami et al. 2023b, 2022; Cao et al.
2023; Hertz et al. 2023; Kawar et al. 2023; Meng et al. 2021; Mokady
et al. 2023; Patashnik et al. 2023; Sheynin et al. 2023; Tumanyan
et al. 2023]. However, most of these editing methods are spatially
preserving (i.e., changing the object attributes and categories), and
suffer from the editing tasks requiring spatial reasoning, such as
object dragging [Brooks et al. 2023; Hertz et al. 2022]. Localized
text-to-image models, such as GLIGEN [Li et al. 2023] and Blob-
GEN [Nie et al. 2024], has the potential to solve the object dragging
task, but their performance is far from satisfactory without special-
ized designs. Concurrently, Diffusion Handles [Pandey et al. 2023]
offers 3D object edits using a depth-to-image diffusion model and
by performing manipulations on the diffusion activations in 3D. In
addition, Magic Fixup [Alzayer et al. 2024] offers a model that given
a coarsely edited image, synthesizes a photorealistic version of it,
by leveraging a video dataset, this way they manage to offer a way
to edit an image coarsely, and then harmonize the result.

Keypoint dragging. A similar task is keypoint dragging, where
users provide source and target keypoints in the image, and move
the source keypoints to the target ones. For example, UserControl-
lableLT [Endo 2022], GANWarping [Wang et al. 2022] and Drag-
GAN [Pan et al. 2023] employ StyleGAN [Karras et al. 2021, 2019,
2020] for editing generated images. But they work only on the nar-
row domain the GAN [Goodfellow et al. 2014] was trained on (e.g.,
human faces, churches [Yu et al. 2015]). DragDiffusion [Shi et al.
2023] propose a LoRA-based [Hu et al. 2021] method that finetunes
a diffusion model given a test image and optimizes the latent noises
at inference time. In contrast, our method is training-free. Concur-
rently, EasyDrag [Hou et al. 2024] improves DragDiffusion [Shi et al.
2023] by replacing the LoRA training with reference guidance.

Object dragging. Different from keypoints dragging that warps
the image to match the target keypoints, object dragging moves the
entire object seamlessly to a new position. Object dragging was ini-
tially introduced by [Epstein et al. 2022; Wang et al. 2021] for single-
domain images generated by GANs. Diffusion self-guidance [Epstein
et al. 2023] proposed to use the guidance from internal represen-
tations of a diffusion model for various editing tasks, including
object dragging. DragonDiffusion [Mou et al. 2023] and DiffEdi-
tor [Mou et al. 2024] developed a new classifier guidance [Dhariwal
and Nichol 2021] specifically designed for object dragging. Most
of them use a general diffusion model as the base model, but our
method harnesses the spatial understanding of a localized diffusion
model to better tackle the object dragging task.

Object insertion. Many works use multiple images [Alaluf et al.
2023; Arar et al. 2024; Gal et al. 2022; Ruiz et al. 2023; Voynov et al.
2023] or a single image [Arar et al. 2023; Avrahami et al. 2023a;
Gal et al. 2023] of the same object for image personalization. They
are also effective in tackling the task of referenced-based object
insertion, in which a reference object is being inserted to a target
image. AnyDoor [Chen et al. 2023a] and PaintByExample [Yang
et al. 2022] train a designated encoder for this task, which can
be used for object dragging by utilizing an inpainting method, as
explained in Section 5. The concurrent work ObjectDrop [Winter
et al. 2024] collected a high-quality tailored dataset to train a model

Self-Attention

Gated Self-Attention

Cross-Attention

Masked Cross-Attention

Visual Tokens

Pooled Local Texts Embeddings

Caption Tokens

Blob Embeddings

Fig. 3. BlobGEN Architecture. BlobGEN incorporates the additional blob
information into the Stable Diffusion model by adding two new layers in
each attention block: masked cross-attention and gated cross-attention.

for object removal, insertion, and dragging. Our method, however,
is training-free with a pre-trained localized diffusion model.

3 PRELIMINARIES
Existing large text-to-image diffusionmodels suffer from the prompt-
following issue, making it challenging to control the visual layouts
of their generation via complex prompts only. Thus, incorporating
the visual layout information into these large text-to-image diffu-
sion models can enable better object-level controllability [Avrahami
et al. 2023a; Li et al. 2023; Yang et al. 2023]. Among them, visual lay-
outs are usually represented by bounding boxes (along with object
categories).
More recently, BlobGEN [Nie et al. 2024] has introduced a new

type of visual layouts called blob representations to guide the image
synthesis, which shows more fine-grained controllability than all
previous approaches. Specifically, the blob representations denote
the object-level visual primitives in a scene, each of which consists
of two components: blob parameters 𝜏 and blob description 𝑆 . A blob
parameter depicts a tilted ellipse using a vector of five variables 𝜏 =
[𝑐𝑥 , 𝑐𝑦, 𝑎, 𝑏, 𝜃 ] to specify the object’s position, size and orientation,
where (𝑐𝑥 , 𝑐𝑦 ) is the center point of the ellipse, 𝑎 and 𝑏 are the
radii of its semi-major and semi-minor axes, and 𝜃 ∈ (−𝜋, 𝜋] is the
orientation angle of the ellipse. A blob description 𝑆 captures the
object’s visual appearance using a region-level synthetic caption
extracted by an image captioning model. Compared with bounding
boxes and object categories, the blob representations can retain
more detailed spatial and appearance information about the objects
in a complex scene.
To incorporate blob representations into the existing Stable Dif-

fusion model, BlobGEN adopts a similar architecture design idea to
GLIGEN [Li et al. 2023] that introduces new attention layers in a
gated way. To retain the prior knowledge of pre-trained models for
synthesizing high-quality images, it freezes the weights of the pre-
trained diffusion model and only trains the newly added layers. As
demonstrated in Figure 3, BlobGEN keeps the gated self-attention
module originally developed by GLIGEN while also introducing a
new masked cross-attention module in each attention block. These
two new layers fuse blob inputs into the model differently: In the

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.



4 • Avrahami et al.

gated self-attention layer, the blob embeddings are first passed to a
pooling layer and then concatenated with the visual features, while,
in the masked cross-attention layer, each blob embedding only at-
tends to visual features in its local region as the feature maps are
masked by the (rescaled) blob ellipses.
With this masking design, each blob representation and its lo-

cal visual feature are trained to align with each other, and thus
the model becomes more modular and disentangled. BlobGEN has
demonstrated more fine-grained control over its generation. There-
fore, we use BlobGEN as our network backbone for solving the
object dragging task.

4 METHOD
Our goal is to offer a solution to the problem of object dragging. To
this end, we propose to leverage the spatial knowledge of blob-based
text-to-image model BlobGEN [Nie et al. 2024]. In Section 4.1 we
start by investigating the disentanglement offered by this model.
We discover significant lingering entanglement, and trace it to the
gated-self attention of GLIGEN-style models. Hence, we offer an
inference-time mask-based solution to this problem. In Section 4.2
we present our solution for object dragging in generated images: (1)
we first utilize self-attention sharing [Cao et al. 2023; Geyer et al.
2023; Tewel et al. 2024; Wu et al. 2022] to increase the consistency of
the dragged object, and (2) we propose a soft anchoring technique
to improve the consistency of results. Finally, in Section 4.3 we
extend our solution to real images by relying on the proposed DDPM
self-attention bucketing instead of standard DDIM inversion. Our
method is summarized in Figure 4.

Formally, given an input image 𝐼 with an object located in (𝑐𝑥 , 𝑐𝑦)
that the user wants to drag, and a desired target location (𝑐′𝑥 , 𝑐′𝑦),
the task of object dragging aims at moving the object to the target
location while the rest of the image is left intact, up to desired
environment changes (e.g., reflections) in the edited image 𝐼 ′.

4.1 Gated Self-Attention Entanglement
As explained in Section 3, BlobGENwas trained to take a set of input
blobs 𝐵1, ...𝐵𝑛 with corresponding text descriptions 𝑆1, ...𝑆𝑛 and blob
parameters 𝜏1, ...𝜏𝑛 , and generate a scene. This scene is expected
to be created in a disentangled manner, i.e., the text description
𝑆𝑖 should correspond only to the local region depicted by 𝜏𝑖 . To
this end, the authors introduced a masked cross-attention layer.
However, a simple investigation reveals that the generated result
is not fully disentangled in practice. For example, as can be seen in
Figure 5 (first row), the rabbit text description from one blob spills
over to the spatial region of the cat blob.
We hypothesize that the gated self-attention modules that Blob-

GEN derives from GLIGEN is the root cause of entanglement. In
gated self-attention, a projection layer first converts the CLIP [Rad-
ford et al. 2021] text embeddings of the text description 𝑆𝑖 to the text
tokens 𝑇 = {𝑡1, ...𝑡𝑛}. They are then merged with the visual tokens
𝑉 = {𝑣1, ...𝑣𝑘 } into a unified set 𝑉 ∪ 𝑇 = {𝑣1, ...𝑣𝑘 , 𝑡1, ...𝑡𝑛}, which
altogether are used to calculate the self-attention features, using the
standard self-attention mechanism (plus a gated skip connection).
This design choice adds no constraint over the attended areas,

i.e., the projected text tokens 𝑇 can attend to themselves and all the

visual tokens𝑉 . To visualize this phenomenon, we average the gated
self-attention maps over the diffusion process. An example is shown
in Figure 5 (the second column of the first row). This visualization
reveals an interesting aspect: the vast majority of attention weights
is between the projected text tokens 𝑇 and the visual tokens 𝑉 ,
and not within these sets themselves. It means that the gated self-
attention layer behaves as a de facto cross-attention layer.
We examine the attention between the projected text token 𝑡𝑖

and all the visual tokens 𝑉 . This is a 𝐾-dimensional vector, which
we first reshape into two dimensions

√
𝐾 ×

√
𝐾 , and then resize

to a canonical size. We term these maps “reshaped self-attention”,
which are averaged over all the denoising steps. This visualization,
as shown in Figure 5 (last two columns of the first row), reveals
that text tokens indeed attend to undesired areas: the “rabbit” text
token attends to the visual features in both the “rabbit” and “cat”
blob regions, leading to an entangled generation. For more details
about the visualizations, please refer to the supplementary material.

To this end, we suggest an inference-time solution to the entangle-
ment problem: given 𝑛 different input blobs with the corresponding
parameters 𝜏1, ...𝜏𝑛 we first convert them into 𝑛 masks𝑀1, ...𝑀𝑛 of
512 × 512 resolution. Then, during the diffusion process, for each
self-attention layer and for each projected text token 𝑡𝑖 , we reshape
the mask𝑀𝑖 to the corresponding spatial size of the layer, and use
it to mask the area of the gated self-attention between the projected
text token 𝑡𝑖 and the visual tokens 𝑉 . This way, we can prevent the
token 𝑡𝑖 from attending to undesired areas at the inference time.

4.2 Consistent Object Dragging for Generated Images
Now, we first focus on tackling the object dragging problem for
generated images from the localized model: given a scene repre-
sented by 𝑛 blob inputs 𝐵1, ...𝐵𝑛 , we change the parameters 𝜏𝑠 of
one blob 𝐵𝑠 to 𝜏𝑑 with a different spatial location such that the 𝑠th
object in the generated image will be relocated to the designated
location, without changing the appearance of all other objects and
the background (barring direct interactions with the object, e.g.,
shadows).
To preserve the high-level object appearance, we adopt the self-

attention sharing mechanism [Cao et al. 2023; Wu et al. 2022]: we
iteratively generate the source image using the source parameters
𝜏𝑠 in parallel to the target image with the 𝜏𝑑 parameters. Then, we
replace the self-attention keys 𝐾𝑑 and values 𝑉𝑑 from the target
image in each self-attention layer and each denoising step by the
keys and values 𝐾𝑠 ,𝑉𝑠 from the source image.

However, this mechanism alone does not fully preserve the fine-
grained details of the source image, sowe propose adding a novel soft
anchoring mechanism: the motivation is that the generated source
image already contains the information needed for generating the
target image, we can take advantage of the self-attention layers
output (i.e., attention features) in the local region that corresponds
to the source blob. The soft anchoring is designed to fuse the object
appearance information represented by the attention features within
the source blob and the positional information indicated by the
target blob. Specifically, in the first 𝜌 steps of the denoising process,
we perform an adaptive, soft blending of the attention features of
the generated target image with the features of the source image.
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Fig. 4. Method Overview. Given an input image 𝐼 , we start by extracting the blob parameters 𝑃𝑠 of its layout; then, by changing its layout based on the
user provided target location, we get the new blob parameters 𝑃𝑑 . By conditioning the localized text-to-image model on the respective blob representations,
we iteratively denoise the source and target images (𝑧𝑠 and 𝑧𝑑 ) while incorporating gated self-attention masking (Section 4.1) and soft attention anchoring
(Section 4.2) in each self-attention block until we get the desired editing result 𝐼 ′ .
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Fig. 5. Gated Self-Attention Leakage. Given scene descriptions of two
blobs: “a photo of a rabbit” and “a photo of a cat” , we can see that the standard
BlobGEN model (the first column in the first row) generates two rabbits
instead of a cat and a rabbit, we then visualize the gated self-attention layers,
as explained in Section 4.1. As can be seen, the standard BlobGEN model
(first row) leaks the rabbit information also to the cat blob (the first row third
column), while our masked version of the gated self-attention (second row)
is able to disentangle the blobs (the second row third column). In addition,
we can see that the gated self-attention (second column) behaves de facto
as a cross-attention layer, as the vast majority of the attention is between
the text tokens𝑇 and the visual tokens𝑉 .

The interpolation coefficient is time-dependent: we take more visual
appearance from the source image in the beginning but more spatial
information from the target image in the later steps, as depicted in
Figure 6. Formally, for each denoising step 𝑡 ∈ [𝑇,𝑇 −1, ...,𝑇 −𝜌 +1]
and for each self-attention layer, the interpolated self-attention
output of the target image is:

𝑂𝑎 = 𝑂𝑠 ∗ 𝑓 +𝑂𝑑 ∗ (1 − 𝑓 ); 𝑓 =
𝑡

𝑇

. . .

𝑡 > 𝑇	 − 𝜌 𝑡 ≤ 𝑇	 − 𝜌

𝐵!

𝐵"

𝑂!

𝑂" 𝑂# 𝑂

. . .

𝑂!
𝑓 =

𝑡
𝑇

1 − 𝑓

Fig. 6. Self-Attention Soft Anchoring. Given the source blob 𝐵𝑠 and
target blob 𝐵𝑑 , we start by extracting the self-attention outputs𝑂𝑠 and𝑂𝑑

correspondingly, then, during the first 𝜌 iterations, we blend these maps
according to the timestep ratio 𝑓 = 𝑡

𝑇
where 𝑡 is the current timestep and𝑇

is the total number of timesteps. Then, after the anchormap𝑂𝑎 is calculated,
we use it for determining the position of the new blob, while taking the
appearance from the corresponding𝑂𝑠 map using nearest-neighbor copying.

where𝑂𝑠 is the self-attention output of the generated source image,
𝑂𝑑 is the self-attention output of the generated target image, and 𝑇
is the total number of denoising steps. The length of soft blending
is controlled by the hyperparameter 𝜌 .

Next, during the last𝑇 − 𝜌 steps of the denoising process, we use
the soft blending result 𝑂𝑎 as anchor points for the target object.
In each denoising step 𝑡 ∈ [𝑇 − 𝜌, ..., 2, 1] and each self-attention
layer, we perform the nearest-neighbor copying: each entry from the
anchor attention features 𝑂𝑎 within the target blob 𝐵𝑑 is replaced
by its nearest-neighbor entry from the source attention features 𝑂𝑠

within the source blob 𝐵𝑠 . The nearest-neighbor entry is obtained

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.



6 • Avrahami et al.

by measuring the normalized cosine similarity. Formally,

(𝑂𝑎) ( 𝑗,𝑘 ) ∈𝐵𝑑
= (𝑂𝑠 )NN( 𝑗,𝑘 ) ∈𝐵𝑠

where ( 𝑗, 𝑘) ∈ 𝐵𝑑 represents the set of coordinates for each entry
from 𝑂𝑎 within the target blob 𝐵𝑑 and NN( 𝑗, 𝑘) ∈ 𝐵𝑠 denotes the
set of coordinates for each nearest-neighbor entry from 𝑂𝑠 within
the source blob 𝐵𝑠 .

4.3 Extension for Real Images
In order to extend our method for dragging objects in real images,
we first extract the blobs parameters as we explain later, then, we
need to invert the image. However, we found that directly applying
theg DDIM inversion [Song et al. 2020] in a localized model is
not able to preserve the details of the input image, even without
classifier-free guidance [Ho 2022]. Using more advanced inversion
methods [Huberman-Spiegelglas et al. 2023; Qi et al. 2023] will not
work in our case, as they preserve the general structure of the scene,
whereas we are interested in changing the scene layout significantly.

Recall that when dealing with generated images, the input signal
from the source image is fed in our pipeline through its self-attention
outputs. Hence, we only need to extract the self-attention features
in different attention layers and different denoising steps from the
real image, rather than an actual inversion that searches for the op-
timal latent noises. To this end, we propose the DDPM self-attention
bucketing: we first add independent noises with various scales to
the real image, where the noise scale corresponds to a time step in
the DDPM forward process. The noisy images at every time step,
along with the above extracted blobs, are then passed to the local-
ized model to get self-attention outputs in every attention layer, as
needed. Note that the DDPM self-attention bucketing is specifically
designed for the object dragging task, where we aim to preserve
the visual details of the real image. It may not be suitable for other
image editing tasks that change the object appearance or category.
For extracting the blobs representations from real images, we

utilize ODISE [Xu et al. 2023] to get instance segmentation maps,
then we use an ellipse fitting optimization with the goal of maximiz-
ing the Intersection Over Union (IOU) between the ellipse and the
generated mask. Finally, we crop a local region around each blob
and use LLaVA-1.5 [Liu et al. 2023] for the local captioning.
Finally, in order to better preserve the background, we incorpo-

rated the Blended Latent Diffusion [Avrahami et al. 2023b, 2022]
method into our process in which the background pixels are being
integrated into the diffusion process in order to seamlessly blend
the generated result in the original scene. For more details, please
refer to the supplementary material.

5 EXPERIMENTS
In Section 5.1, we compare our method against several baselines,
both qualitatively and quantitatively. Next, in Section 5.2 we describe
the user study on various methods and present the outcome. Lastly,
in Section 5.3, we show the ablation study results to highlight the
importance of each component.

5.1 Qualitative andQuantitative Comparison
We compared our method against the most relevant available object
dragging baselines. Paint-By-Example (PBE) [Yang et al. 2022] and

Table 1. Quantitative Comparison. We compare our method against the
baselines in terms of foreground similarity (higher is better), object traces
(lower is better) and realism (lower is better). As can be seen, DiffEditor [Mou
et al. 2024] and DragonDiffusion [Mou et al. 2023] struggle with object
traces as they suffer from the object traces issue. PBE [Yang et al. 2022],
Anydoor [Chen et al. 2023a], DragDiffusion [Shi et al. 2023] and Diffusion
SG [Epstein et al. 2023] struggle with foreground similarity as they tend
not to drag the object. In contrast, our method significantly outperforms all
the baselines in terms of object traces and also achieves higher foreground
similarity with comparable image realism.

Method Foreground (↑) Traces (↓) Realism (↓)
PBE [Yang et al. 2022] 0.614 0.446 0.0029
DiffusionSG [Epstein et al. 2023] 0.515 0.459 0.0096
Anydoor [Chen et al. 2023a] 0.684 0.454 0.0035
DragDiffusion [Shi et al. 2023] 0.738 0.603 0.0011
DragonDiffusion [Mou et al. 2023] 0.818 0.773 0.0009
DiffEditor [Mou et al. 2024] 0.826 0.604 0.0008

DiffUHaul (ours) 0.835 0.32 0.0008

Table 2. Ablation Study. We ablate the following components of our
method: (1) w/o gated self-attention (GSA) masking, (2) w/o self-attention
(SA) sharing, (3) w/o soft attention anchoring and (4) w/o DDPM noising. As
can be seen, removing the (1) GSA masking harms the foreground similar-
ity, as leakages from neighboring blobs can interfere. Removing the (2) SA
sharing or the (3) soft attention anchoring harms the foreground similarity
as well, as it reduces the similarity the input image. Removing the DDPM
SA bucketing slightly improves the object traces but significantly harms the
foreground similarity, as the details of source images are not well preserved.

Method Foreground (↑) Traces (↓) Realism (↓)
DiffUHaul (ours) 0.835 0.320 0.0008

w/o GSA masking 0.823 0.320 0.0008
w/o SA sharing 0.755 0.314 0.0014
w/o soft attention anchoring 0.780 0.322 0.0008
w/o DDPM SA bucketing 0.675 0.298 0.0029

AnyDoor [Chen et al. 2023a] present a way of adding an object
to an image. To use them for object dragging, we crop the object
from the source image, apply the image inpainting in the cropped
region, and then add the object in the new location. Diffusion Self-
Guidance (Diffusion SG) [Epstein et al. 2023] tackles the general
image editing tasks via attention guidance, which can be tailored to
object dragging. DragDiffusion [Shi et al. 2023] is designed for the
task of keypoint-based dragging, which we can convert into object
dragging by selecting multiple points on the source object. Finally,
DragonDiffusion [Mou et al. 2023] and DiffEditor [Mou et al. 2024]
directly tackle the problem of object dragging. For more details,
please see the supplementary material.
As can be seen in Figure 8, PBE [Yang et al. 2022], Anydoor

[Chen et al. 2023a] and DiffusionSG [Epstein et al. 2023] can hardly
preserve the appearance of the edited object and always have un-
desirable objects or artifacts left in the source location, indicating
that existing general-purpose image editing methods tend to com-
pletely fail in the object dragging task. DragDiffusion [Shi et al.
2023] struggles with moving the object to the target location, while
DragonDiffusion [Mou et al. 2023] and DiffEditor [Mou et al. 2024]
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often suffers from the object traces issue, where the object appears
in both source and target locations. In contrast, our method strikes
the best balance between effectively dragging the object to the right
position and preserving its visual appearance.
To quantify the performance of our method and baselines, we

prepare a specialized evaluation dataset based on the COCO [Lin
et al. 2014] validation set. We first filter it to contain only images
that have a single “thing” object with a prominent size. Then, we use
the same blobs extraction pipeline as explained in Section 4.3. For
the object dragging task, we randomly sample a new location in the
pixel space as the center of the target blob 𝐵𝑑 . For each sample, we
calculate 8 different target drag locations, resulting in a total dataset
of 6,048 samples. For more details, please read the supplementary
material. In Figure 9, we provide a qualitative comparison on the
automatic dataset, where we make similar observations as before.
Based on this new dataset, we propose three evaluation metrics:

foreground similarity, object traces and realism. Foreground similarity
quantifies whether the source object indeed dragged to the target
location without appearance changes. To this end, we crop a tight
box area around the source blob 𝐵𝑠 in the source image 𝐼𝑠 and around
the target blob 𝐵𝑑 in the target image 𝐼 ′, respectively, and pass the
crops to DINOv2 [Oquab et al. 2023] to measure the perceptual
similarity after aligning them to a canonical position and masking
the background. We strive to maximize this metric. To measure the
object traces phenomenon, we crop a tight box area around the
source blob 𝐵𝑠 in the source image 𝐼𝑠 and around the source blob
𝐵𝑠 in the target image 𝐼 ′. Next, we mask the target blob 𝐵𝑑 area
in the target image 𝐼 ′. Similarly, we utilize DINOv2 [Oquab et al.
2023] to measure the perceptual similarity between the crops. We
strive to minimize this metric. Lastly, to measure the realism of the
edited image, we utilize KID score [Binkowski et al. 2018] of sets
of 672 real and generated images. For more details, please read the
supplementary material.

As can be seen in Table 1, DiffEditor [Mou et al. 2024] and Dragon-
Diffusion [Mou et al. 2023] rank high in object traces as they suffer
from object traces problem. PBE [Yang et al. 2022], Anydoor [Chen
et al. 2023a], DragDiffusion [Shi et al. 2023] and Diffusion SG [Ep-
stein et al. 2023] struggle with foreground similarity as they tend
not to drag the object. On the other hand, our method significantly
outperforms all the baselines in terms of object traces, which demon-
strates the robustness of our method. In addition, it achieves higher
foreground similarity and is on par in terms of image realism. These
results are supported by the qualitative comparison.

5.2 User Study
We conduct an extensive user study using the Amazon Mechanical
Turk (AMT) platform [Amazon 2024], where the test examples are
also sampled from the automatically extracted dataset as explained
in Section 5.1. We compare all the baselines using the standard
two-alternative forced-choice format. Users were given the source
image, the edit instructions and two edited images: one from our
method and another one from a baseline. For each comparison,
users were asked to rate which edited image is better in terms of:
(1) dragging the object to the desired location (2) leaving no traces
of the original object, (3) realism and (4) overall edit quality (i.e.,

Table 3. User Study.We compare our method against the baselines using
the standard two-alternative forced-choice format. Users were asked to rate
which editing result is better (Ours vs. the baseline) in terms of: (1) dragging
the object to the desired location (2) leaving no traces of the original object,
(3) realism and (4) overall edit quality. The number represents the win rate
of our method over each of the baselines. As we can see, our method wins
the baselines in all terms more than the random win rate of 50%.

Ours vs Dragging (↑) No traces (↑) Realism (↑) Overall (↑)
PBE [Yang et al. 2022] 82.14% 78.57% 82.58% 79.68%
DiffusionSG [Epstein et al. 2023] 79.46% 76.78% 77.45% 77.45%
Anydoor [Chen et al. 2023a] 81.02% 76.78% 81.91% 81.25%
DragDiffusion [Shi et al. 2023] 64.73% 58.92% 59.82% 61.16%
DragonDiffusion [Mou et al. 2023] 77.00% 75.22% 81.02% 76.56%
DiffEditor [Mou et al. 2024] 73.43% 70.08% 70.08% 76.33%

taking all the aspects into account). As can be seen in Table 3, our
method is preferred over all the baselines in terms of the overall
edit quality and different individual perspectives. This observation
aligns well with our automatic metrics. The user study suggests that
DragDiffusion is the second-strongest baseline, it may be due to the
fact that it also results with realistic images, as it also avoids leaving
traces of the dragged object, which the automatically calculated KID
do not take into account. For more details and statistical significance
analysis, please read the supplementary material.

5.3 Ablation Study
We perform the ablation study for the following components of
our method: (1) Without gated self-attention masking — we remove
the gated self-attention masking that is described in Section 4.1.
(2) Without self-attention sharing — we remove the self-attention
sharing component. (3) Without soft attention anchoring — we re-
move the soft attention anchoring that is described in Section 4.2.
(4)Without DDPM noising — we replace the DDPM noising that is
described in Section 4.3 with a DDIM inversion [Song et al. 2020].
We use the same automatic evaluation metrics as described in

Section 5.1 to quantify the importance of each component. As can
be seen in Table 2, removing the (1) GSA masking harms the fore-
ground similarity, as leakages from neighboring blobs can interfere
the visual appearances of the focused object. Removing the (2) SA
sharing or the (3) soft attention anchoring harms the foreground
similarity as well, as it reduces the similarity to the input image.
Removing the DDPM noising slightly improves the object traces, but
it significantly harms the foreground similarity, as the reconstructed
image itself has changed significantly. For a qualitative visualization
of the ablation study, please refer to the supplementary material.

6 LIMITATIONS AND CONCLUSIONS
Our method suffers from the following limitations that are depicted
in Figure 7: (a) We found our diffusion anchoring technique intro-
duced in Section 4.2 to be incapable of rotating objects, and instead,
as can be seen in Figure 7(a), stretch the object to fit the new blob
shape without changing the orientation, this may be caused due
to the fact that rotation involves understanding the 3D structure,
which is not reflected by the self-attention nearest-neighbor copying.
(b) We found our method to struggle with resizing object, especially
in large resizes, as can be seen in Figure 7(b) Resize 3. (c) We found

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.



8 • Avrahami et al.
(a
)R

ot
at
io
n

Original Rotation 1 Rotation 2 Rotation 3

(b
)R

es
iz
e

Original Resize 1 Resize 2 Resize 3

(c
)C

ol
lis
io
n

Original Drag 1 Drag 2 Drag 3

Fig. 7. Limitations. Our method suffers from the following limitations: (a)
We found our method to be incapable of rotating objects, and instead stretch
the objects to fit the new blob shape without changing the orientation. (b)
We found our method to struggle with resizing objects, especially in large
resizes (e.g., Resize 3 in the second row). (c) We found our method to struggle
to handle colliding objects while dragging, which may result with a hybrid
between the objects (e.g., Drag 2 in the third row) or one object beingmerged
(e.g., Drag 3 in the third row).

our method to struggle to handle colliding object while dragging,
which may result with a hybrid between the objects (Figure 7(c)
Drag 2) or one object being merged (Figure 7(c) Drag 3).

In conclusion, we presented DiffUHaul, our solution to the seem-
ingly straightforward task of object dragging. We demonstrated
that the spatial understanding of the localized BlobGEN can be har-
nessed to this task, using our novel diffusion anchoring technique
that manages to merge the location signal from the model with the
object appearance signal from the input image.
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Fig. 8. Qualitative Comparison. We compared our method against several baselines on both generated (first three columns) and real images (second three
columns). The source and target locations are denoted by red and green points, respectively. As can be seen, PBE [Yang et al. 2022], DiffusionSG [Epstein et al.
2023] and Anydoor [Chen et al. 2023a] mainly suffer from a bad preservation of the foreground object. DragDiffusion [Shi et al. 2023] struggles with dragging
the object, while DragonDiffusion [Mou et al. 2023] and DiffEditor [Mou et al. 2024] suffers from object traces. Our method, on the other hand, strikes the
balance between dragging the object and preserving its identity.
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Fig. 9. Qualitative Automatic Comparison. As explained in Section 5.1, we used a filtered version of COCO validation set [Lin et al. 2014]. The source and
target locations are denoted by red and green points, respectively. As can be seen, PBE [Yang et al. 2022], DiffusionSG [Epstein et al. 2023] and Anydoor
[Chen et al. 2023a] mainly suffer from a bad preservation of the foreground object. DragDiffusion [Shi et al. 2023] struggles with dragging the object, while
DragonDiffusion [Mou et al. 2023] and DiffEditor [Mou et al. 2024] suffers from object traces. Our method, on the other hand, strikes the balance between
dragging the object and preserving its identity.
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A IMPLEMENTATION DETAILS
In Appendix A.1 we start by providing the implementation details
of our method. Next, in Appendix A.2 we provide the baselines’
implementation details. Later, in Appendix A.3 we provide the im-
plementation details of the automatic metrics we used. Finally, in
Appendix A.4 we provide the detail of the user study we conducted.

A.1 Implementation Details of Our Method
Below, we provide the full implementation details of our method:
in Appendix A.1.1 we start by providing the implementation de-
tails for the gated self-attention visualization we used, next, in
Appendix A.1.2 we provide the implementation details of the soft
self-attention anchoring we used, and finally, in Appendix A.1.3 we
explain about the Blended Latent Diffusion integration.

A.1.1 Gated Self-Attention Visualization Implementation Details.
As explained in Section 4.1 we offer a method to visualize the gated
self-attention layer of GLIGEN [Li et al. 2023] and BlobGEN [Nie
et al. 2024]. In gated self-attention, a projection layer first con-
verts the CLIP [Radford et al. 2021] text embeddings of the text
description 𝑆𝑖 to the text tokens 𝑇 = {𝑡1, ...𝑡𝑛}. They are then
merged with the visual tokens 𝑉 = {𝑣1, ...𝑣𝑘 } into a unified set
𝑉 ∪ 𝑇 = {𝑣1, ...𝑣𝑘 , 𝑡1, ...𝑡𝑛}, which altogether are used to calculate
the self-attention features, using the standard self-attention mecha-
nism (plus a gated skip connection).
We examine the attention between the projected text token 𝑡𝑖

and all the visual tokens 𝑉 . This is a 𝐾-dimensional vector, which
we first reshape into two dimensions

√
𝐾 ×

√
𝐾 , and then resize to a

canonical size. We term these maps “reshaped self-attention”, which
are averaged over all the denoising steps. We average these maps
across all the diffusion steps and all the layers, by resizing them to
a canonical size.

In Figure 10 we provide a full visualization of these maps. As can
be seen, even though there is no constraint on the attention distribu-
tion (as in any other self-attention layer), we found empirically that
the vast majority of the attention is being formed between the used
pooled textual tokens (the first part of 𝑇 ) and the visual tokens 𝑉 .
There is little interaction within the individual sets themselves. This
behavior suggests that this kind of self-attention layers behaves as
de facto cross attention layers. Our inference-time masking mecha-
nism (right) further constrains each textual token to only attend to
its corresponding visual token within the blob region.
Please note that these kind of visualizations and the masking

manipulations are different from the those common in the text-
to-image diffusion-based models literature [Avrahami et al. 2023a;
Chefer et al. 2023; Hertz et al. 2022] as we do not manipulate the
traditional cross-attention layers but the gated self-attention layers.

A.1.2 Soft Self-Attention Anchoring Implementation Details. As ex-
plained in Section 4.2, we propose the soft self-attention anchoring
to fuse the spatial information from the localized model and the
appearance information from the input source image. Specifically,
in the first 𝜌 = 𝑇

2 steps of the denoising process, we perform an
adaptive, soft blending of the attention features of the generated tar-
get image with the features of the source image. The interpolation
coefficient is time-dependent: we take more visual appearance from

Table 4. Inference Time Comparison. We report the inference time of
the baselines and our method of editing a single 512 × 512 image. All the
reported running times we calculated using a single NVIDIA A100 GPU.

Method Inference time (𝑠𝑒𝑐)
PBE [Yang et al. 2022] 9 sec
Diffusion SG [Epstein et al. 2023] 14 sec
Anydoor [Chen et al. 2023a] 9 sec
DragDiffusion [Shi et al. 2023] 148 sec
DragonDiffusion [Mou et al. 2023] 13 sec
DiffEditor [Mou et al. 2024] 13 sec

DiffUHaul (ours) 13 sec

the source image in the beginning but more spatial information
from the target image in the later steps.

Next, during the last𝑇 − 𝜌 steps of the denoising process, we use
the soft blending result 𝑂𝑎 as anchor points for the target object. In
each denoising step 𝑡 ∈ [𝑇 − 𝜌, ..., 2, 1] and each self-attention layer,
we perform the nearest-neighbor copying: each entry from the anchor
attention features 𝑂𝑎 within the target blob 𝐵𝑑 is replaced by its
nearest-neighbor entry from the source attention features𝑂𝑠 within
the source blob 𝐵𝑠 . To calculate the nearest-neighbor, we normalize
each self-attention entry of𝑂 and calculate its cosine similarity with
each entry of𝑂𝑠 . Please note that the nearest-neighbor operation is
only within the source blobs 𝐵𝑠 and destination blob 𝐵𝑑 boundaries.
To calculate the these blobs, we reshape them to the corresponding
self-attention size of each layer.

A.1.3 Blended Latent Diffusion Integration. Blended Latent Diffu-
sion [Avrahami et al. 2023b, 2022] is a method designed for localized
image editing using text-to-image diffusion models. the input im-
age is fused into the diffusion process along with an input mask to
preserve it background, while encouraging the generated content
(in the unmasked area) to be consistent to the background. We also
use this method in our pipeline of editing real images, as introduced
in Section 4.3. Given the source blob 𝐵𝑠 and the destination blob
𝐵𝑑 provided by the user, we take the union blob that contains both
of them 𝐵𝑢 = 𝐵𝑠 ∪ 𝐵𝑑 , and morphologically dilate it with a kernel
of a size of 50 × 50. We treat this dilated blob as the editable area,
which we provide to the Blended Latent Diffusion method to edit
real images during the entire diffusion process (i.e. the hyperparam-
eter of noising diffusion steps 𝑘 = 𝑇 , where𝑇 is the total number of
diffusion steps).

A.2 Implementation Details of Baselines
As described in Section 5.1, we compare ourmethod against the avail-
able, most relevant object dragging baselines: Paint-By-Example
[Yang et al. 2022], AnyDoor [Chen et al. 2023a], Diffusion Self-
Guidance [Epstein et al. 2023], DragDiffusion [Shi et al. 2023], Drag-
onDiffusion [Mou et al. 2023] and DiffEditor [Mou et al. 2024]. Out of
these, Diffusion Self-Guidance, DragonDiffusion and DiffEditor di-
rectly support the task of object dragging. The rest of these baselines
need some adaptations to our problem, as described below.
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Fig. 10. Full Gated Self-Attention Visualization. We provide our visualization for the gated self-attention layers, before our inference time masking (left)
and after it (right). As can be seen, even though there is no constraint on the attention distribution (as in any other self-attention layer), we found empirically
that the vast majority of the attention is being formed between the used pooled textual tokens (the first part of𝑇 ) and the visual tokens𝑉 . And not between
the sets themselves. This behavior suggests that this kind of layers behaves de facto as cross attention layers. Our inference-time masking mechanism (right)
constrain the attention between the textual tokens and only their corresponding visual tokens within their blobs.

Paint-By-Example and AnyDoor present a way to add an object
to an image. Hence, in order to convert it to our problem setting
we constructed a designated pipline: we started taking the source
image 𝐼 and inpaint the source area blob 𝐵𝑠 using Stable Diffusion
Inpaint [von Platen et al. 2022], to get an inpainted version 𝐼 . Then,
we used Paint-By-Example/Anydoor to inpaint the new image 𝐼
again, in the target blob area 𝐵𝑑 by providing the original object in
the original image 𝐼 as a reference.
DragDiffusion is originally designed to tackle the problem of

keypoint-based dragging. Thus, in order to adapt it to our method,
we take the centroid of the source blob 𝐵𝑠 as well as other points
sampled inside the source blob region, and then translate them to
the target blob 𝐵𝑑 .

We used the official baseline implementations with a comparable
backbone of Stable Diffusion v1 [Rombach et al. 2021] using 50
DDIM diffusion steps, except Diffusion Self-Guidance [Epstein et al.
2022], of which the only available implementation is based upon
SDXL [Podell et al. 2023].
In Table 4 we report the inference time of our method and the

baselines for a single image editing using an NVIDIA A100 GPU.
All the methods takes around 10 seconds, except DragDiffusion that
is using an extensive LoRA [Horwitz et al. 2024; Hu et al. 2021]

training and latent optimization, which increases the inference time
significantly.

We used the following third-party packages in this research:

• Official GLIGEN [Li et al. 2023] implementation at https://
github.com/gligen/GLIGEN.

• Official Paint-By-Example [Yang et al. 2022] Diffusers [von
Platen et al. 2022] implementation.

• Official Diffusion Self-Guidance [Epstein et al. 2023] SDXL
implementation at https://colab.research.google.com/drive/
1SEM1R9mI9cF-aFpqg3NqHP8gN8irHuJi.

• Official AnyDoor [Chen et al. 2023a] implementation at https:
//github.com/ali-vilab/AnyDoor.

• Official DragDiffusion [Shi et al. 2023] implementation at
https://github.com/Yujun-Shi/DragDiffusion.

• Official DragonDiffusion [Mou et al. 2023] and DiffEditor
[Mou et al. 2024] at https://github.com/MC-E/DragonDiffusion.

• DINOv2 [Oquab et al. 2023] ViT-g/14 implementation by Hug-
gingFace Transformers [Wolf et al. 2020] at https://github.
com/huggingface/transformers.
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A.3 Implementation Details of Automatic Metrics
As described in Section 5.1, in order to automatically compare our
method against baselines quantitatively, we utilized COCO [Lin
et al. 2014] validation dataset. We filtered it to contain only images
with a main “thing” class object (the number of “stuff” object is
unbounded) that occupies at least 5% of the image size, but not more
than 25% of the image size. Then, we utilize ODISE [Xu et al. 2023]
to get instance segmentation maps, then we use an ellipse fitting
optimization with the goal of maximizing the Intersection Over
Union (IOU) between the ellipse and the generated mask. Next, we
crop a local region around each blob and use LLaVA-1.5 [Liu et al.
2023] for the local captioning. Finally, we choose a random location
for the target blob 𝐵𝑑 that is at least 64 pixels. This resulted with
672 filtered images and 8 target blob locations per image, which is a
total of 6,048 evaluated samples per baseline.
Next, we propose using three metrics: foreground similarity, ob-

ject traces and realism. Foreground similarity quantifies whether
the source object is indeed dragged to the target location. To this
end, we crop a tight square area around the source blob 𝐵𝑠 in the
source image 𝐼 , and the target blob 𝐵𝑑 in the target image 𝑇𝑡 . Next,
we align the crops to a canonical position and mask the background
in these crops by aligning the object to the left side of the image
(in order to avoid translation artifacts). Finally, we utilize DINOv2
[Oquab et al. 2023] to measure the perceptual similarity between
these crops. We strive to maximize this metric.

Similarly, in order to measure the object duplication phenomenon,
we crop a tight square area around the source blob 𝐵𝑠 in the source
image 𝐼 , and around the source blob 𝐵𝑠 in the target image 𝐼 ′. Next,
we mask the target blob 𝐵𝑑 area in the target image 𝐼 ′. Finally, we
utilize again DINOv2 [Oquab et al. 2023] to measure the perceptual
similarity between these crops. We strive to minimize this metric.
Lastly, in order to measure the realism of the image, we compute
the KID score [Binkowski et al. 2018] using 672 real and generated
images. The reason of using KID instead of the FID score [Heusel
et al. 2017] is that it better aligns with human perception of image
generation quality when the provided real and fake sets are small.

A.4 User Study Implementation Details

Table 5. User Study Statistical Significance. A binomial statistical test of
the user study results suggests that our results are statistically significant
(p-value < 5%)

Ours vs Dragging (↑) No traces (↑) Realism (↑) Overall (↑)
p-value p-value p-value p-value

PBE [Yang et al. 2022] < 1e-8 < 1e-8 < 1e-8 < 1e-8
DiffusionSG [Epstein et al. 2023] < 1e-8 < 1e-8 < 1e-8 < 1e-8
Anydoor [Chen et al. 2023a] < 1e-8 < 1e-8 < 1e-8 < 1e-8
DragDiffusion [Shi et al. 2023] < 1e-8 < 2e-5 < 6e-6 < 5e-7
DragonDiffusion [Mou et al. 2023] < 1e-8 < 1e-8 < 1e-8 < 1e-8
DiffEditor [Mou et al. 2024] < 1e-8 < 1e-8 < 1e-8 < 1e-8

As explained in Section 5.2 We conduct an extensive user study
using the Amazon Mechanical Turk (AMT) platform [Amazon 2024].
We use the automatically extracted dataset as explained in Section
5.1 in the main paper. We compare all the baselines using the stan-
dard two-alternative forced-choice format. Users are instructed the

Fig. 11. User Study Trial.We provide an example of one trial task in the
user study we conducted using Amazon Mechanical Turk (AMT) [Amazon
2024]. The users were asked four questions of a two-alternative forced-
choice format. The full instructions can be seen in Figure 12.

following “In the following image, we are interested in moving the
{CATEGORY} from the original location, indicated by the red dot, to
the target location, indicated by a green dot.” where {CATEGORY} is
the [Lin et al. 2014] object class category. Then, the users are given
two editing results: our method and one of the baselines, and are
asked: (1) “Which of the results is better in moving the {CATEGORY}
to the target location?”, (2) “Which of the results is better in leaving
no traces of the {CATEGORY} in the original location?”, (3) “Which
of the results looks more realistic?” and (4) “Which of the results is
better overall?”. The users are also given detailed instructions with
examples. An example of one trail can be seen in Figure 11, and the
full instructions can be seen in Figure 12.

We gather 7 ratings per sample, resulting 448 ratings per baseline,
totaling 2,688 responses. The time allotted per task is one hour,
to allow the raters to properly evaluate the results without time
pressure. A binomial statistical test of the user study results, as
presented in Table 5, suggesting that our results are statistically
significant (p-value < 5%).

B ADDITIONAL RESULTS
In Figure 13 we provide an additional qualitative comparison of
our method against the baselines on the automatically extracted
dataset (as explained in Appendix A.3). As can be seen, PBE [Yang
et al. 2022], DiffusionSG [Epstein et al. 2023] and Anydoor [Chen
et al. 2023a] mainly suffer from a bad preservation of the foreground
object. DragDiffusion [Shi et al. 2023] struggles with dragging the
object, while DragonDiffusion [Mou et al. 2023] and DiffEditor [Mou
et al. 2024] suffers from object traces. Our method, on the other hand,
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Fig. 12. User Study Instructions. We provide the full instructions for the
user study we conducted using Amazon Mechanical Turk (AMT) [Amazon
2024], to compare our method with each baseline.

strikes the balance between dragging the object and preserving its
identity.
In addition, in Figure 14 we provide a qualitative visualization

of the ablation study we conducted. As can be seen, all these com-
ponents improve the foreground object consistency. Please notice,
the contribution of the GSA masking, as reflected by our automatic
metric in Table 2 in the main paper, is limited in comparison to
the other components that we added. However, the GSA masking
mitigates the GSA leakage, which affects changes in the identity
of the moved objects. This effect is visualized in Figure 14: see the

distorted face of the zebra or the distorted shape of the water pipe
in the second row, which ablates GSA masking.

C SOCIETAL IMPACT
We believe that the advent of technology enabling seamless object
dragging within images holds tremendous promise for a wide array
of creative and practical uses. It may democratize content manipu-
lation for individuals lacking expertise and artistic skills. Further-
more, we believe that this method may present an invaluable tool for
professional artists by expediting their creative processes without
compromising quality.

Conversely, akin to other generative AI technologies, this method
is susceptible to misuse, potentially giving rise to the creation of
deceptive and misleading visual content. The ease and accessibility
afforded by this technology could amplify concerns regarding the
authenticity and trustworthiness of visual media in various contexts,
including journalism, advertising, and social media whichmay erode
the public trust in such content. Therefore, while recognizing its
transformative potential, it is imperative to remain vigilant and
implement appropriate safeguards to mitigate the proliferation of
misinformation and uphold ethical standards in content creation
and dissemination.
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Fig. 13. AdditionalQualitative Automatic Comparison. As explained in Section 5.1, we used a filtered version of COCO validation set [Lin et al. 2014].
The source and target locations are denoted by red and green points, respectively. As can be seen, PBE [Yang et al. 2022], DiffusionSG [Epstein et al. 2023] and
Anydoor [Chen et al. 2023a] mainly suffer from a bad preservation of the foreground object. DragDiffusion [Shi et al. 2023] struggles with dragging the object,
while DragonDiffusion [Mou et al. 2023] and DiffEditor [Mou et al. 2024] suffers from object traces. Our method, on the other hand, strikes the balance
between dragging the object and preserving its identity.
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Fig. 14. Qualitative Results in Ablation Study. As explained in Section 5.3, we ablate four key components of our method: (a) w/o GSA masking, (b) w/o SA
sharing, (c) w/o soft attention anchoring and (d) w/o DDPM SA attention. As can be seen, all these components improve the foreground object consistency. For
example, see the distorted face of the zebra or the distorted shape of the water pipe in the ablated cases.
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